Verkäufer
Revaluation Books, Exeter, Vereinigtes Königreich
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 6. Januar 2003
304 pages. 9.18x6.12x9.21 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1032503807
This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric explainable machine learning approach for obtaining new insights from geospatial data analysis and how they are applied to solve various environmental problems from forestry to climate change.
Über die Autorin bzw. den Autor:
Courage Kamusoko is an independent geospatial consultant based in Japan. His expertise includes land-use/cover change modeling and the design and implementation of geospatial database management systems. His primary research involves analyses of remotely sensed images, land-use/cover modeling, modeling aboveground biomass, machine learning, and deep learning. In addition to his focus on geospatial research and consultancy, he has dedicated time to teaching practical machine learning for geospatial data analysis and modeling.
Titel: Explainable Machine Learning for Geospatial ...
Verlag: CRC Pr I Llc
Erscheinungsdatum: 2024
Einband: Hardcover
Zustand: Brand New
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. Explainable machine learning (XML), a subfield of AI, is focused on making complex AI models understandable to humans. This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric, explainable machine learning approach to obtain new insights from geospatial data. It presents the opportunities, challenges, and gaps in the machine and deep learning approaches for geospatial data analysis and how they are applied to solve various environmental problems in land cover changes and in modeling forest canopy height and aboveground biomass density. The author also includes guidelines and code scripts (R, Python) valuable for practical readers.FeaturesData-centric explainable machine learning (ML) approaches for geospatial data analysis.The foundations and approaches to explainable ML and deep learning.Several case studies from urban land cover and forestry where existing explainable machine learning methods are applied.Descriptions of the opportunities, challenges, and gaps in data-centric explainable ML approaches for geospatial data analysis.Scripts in R and python to perform geospatial data analysis, available upon request.This book is an essential resource for graduate students, researchers, and academics working in and studying data science and machine learning, as well as geospatial data science professionals using GIS and remote sensing in environmental fields. This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric explainable machine learning approach for obtaining new insights from geospatial data analysis and how they are applied to solve various environmental problems from forestry to climate change. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9781032503806
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 394451208
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 47911191-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Hardcover. Zustand: new. Hardcover. Explainable machine learning (XML), a subfield of AI, is focused on making complex AI models understandable to humans. This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric, explainable machine learning approach to obtain new insights from geospatial data. It presents the opportunities, challenges, and gaps in the machine and deep learning approaches for geospatial data analysis and how they are applied to solve various environmental problems in land cover changes and in modeling forest canopy height and aboveground biomass density. The author also includes guidelines and code scripts (R, Python) valuable for practical readers.FeaturesData-centric explainable machine learning (ML) approaches for geospatial data analysis.The foundations and approaches to explainable ML and deep learning.Several case studies from urban land cover and forestry where existing explainable machine learning methods are applied.Descriptions of the opportunities, challenges, and gaps in data-centric explainable ML approaches for geospatial data analysis.Scripts in R and python to perform geospatial data analysis, available upon request.This book is an essential resource for graduate students, researchers, and academics working in and studying data science and machine learning, as well as geospatial data science professionals using GIS and remote sensing in environmental fields. This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric explainable machine learning approach for obtaining new insights from geospatial data analysis and how they are applied to solve various environmental problems from forestry to climate change. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781032503806
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 47911191-n
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. 675. Bestandsnummer des Verkäufers B9781032503806
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26401958615
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47911191
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781032503806_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47911191
Anzahl: Mehr als 20 verfügbar