Inhaltsangabe
Created through a "student-tested, faculty-approved" review process, FINITE is an engaging and accessible solution to accommodate the diverse lifestyles of today's learners at a value-based price. FINITE uses intriguing, real-world applications to capture the interest of business, economics, life science, and social science majors. This practical approach to mathematics, along with the integration of graphing calculators and Excel spreadsheet explorations, exposes students to the tools they will encounter in future careers. An innovative combination of content delivery both in print and online provides a core text and a wealth of comprehensive multimedia teaching and learning assets, including end-of-chapter review cards, downloadable flashcards and practice problems, online video tutorials, solutions to exercises aimed at supplementing learning outside of the classroom.
Über die Autorinnen und Autoren
Dr. Berresford received his Ph.D. from the Courant Institute of Mathematical Sciences at New York University and taught at the State University of New York at Purchase before joining the faculty at the C.W. Post campus of Long Island University. Besides co-authoring four textbooks with Dr. Rockett, he has published papers in differential equations, linear programming, logic, and probability, and has received several teaching awards and the Distinguished Service Award from The Metropolitan New York Section of the Mathematical Association of America.
After completing his Ph.D. at Stony Brook University, Dr. Rockett joined the mathematics faculty at C.W. Post and began his collaborations with Dr. Berresford. His book with Peter Szusz on CONTINUED FRACTIONS (1992) was hailed by Ivan Niven as an outstanding addition to the literature of mathematics," and he served the Kappa Mu Epsilon mathematics honor society as editor of the mathematics journal The Pentagon from 1989 to 1995. Dr. Rockett serves as a reviewer for several journals, including Mathematical Reviews for the American Mathematical Society."
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.