Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27?31 (Springer Proceedings in Mathematics & Statistics)

ISBN 10: 3030779599 ISBN 13: 9783030779597
Verlag: Springer, 2022
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783030779597_new

Diesen Artikel melden

Inhaltsangabe:

Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.

This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

Von der hinteren Coverseite:

Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.

 This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Geometric Structures of Statistical Physics,...
Verlag: Springer
Erscheinungsdatum: 2022
Einband: Softcover
Zustand: New

Beste Suchergebnisse bei AbeBooks

Foto des Verkäufers

ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and s. Bestandsnummer des Verkäufers 608128495

Verkäufer kontaktieren

Neu kaufen

EUR 250,30
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Frédéric Barbaresco (u. a.)
Verlag: Springer, 2022
ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Geometric Structures of Statistical Physics, Information Geometry, and Learning | SPIGL'20, Les Houches, France, July 27-31 | Frédéric Barbaresco (u. a.) | Taschenbuch | xiii | Englisch | 2022 | Springer | EAN 9783030779597 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Bestandsnummer des Verkäufers 121976190

Verkäufer kontaktieren

Neu kaufen

EUR 259,55
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Frank Nielsen
ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing. Bestandsnummer des Verkäufers 9783030779597

Verkäufer kontaktieren

Neu kaufen

EUR 299,59
EUR 63,58 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Frank Nielsen
ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch. Bestandsnummer des Verkäufers 9783030779597

Verkäufer kontaktieren

Neu kaufen

EUR 299,59
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Frank Nielsen
ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing. 476 pp. Englisch. Bestandsnummer des Verkäufers 9783030779597

Verkäufer kontaktieren

Neu kaufen

EUR 299,59
EUR 23,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783030779597

Verkäufer kontaktieren

Neu kaufen

EUR 310,34
Versand gratis
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st ed. 2021 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26395062340

Verkäufer kontaktieren

Neu kaufen

EUR 343,99
EUR 3,41 shipping
Versand innerhalb von USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 402363291

Verkäufer kontaktieren

Neu kaufen

EUR 366,72
EUR 7,42 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 3030779599 ISBN 13: 9783030779597
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18395062350

Verkäufer kontaktieren

Neu kaufen

EUR 369,87
EUR 9,95 shipping
Versand von Deutschland nach USA

Anzahl: 4 verfügbar

In den Warenkorb