Graph Representation Learning

Hamilton, William L

ISBN 10: 1681739631 ISBN 13: 9781681739632
Verlag: Morgan & Claypool, 2020
Gebraucht Softcover

Verkäufer medimops, Berlin, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 10. Mai 2010


Beschreibung

Beschreibung:

Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Bestandsnummer des Verkäufers M01681739631-G

Diesen Artikel melden

Inhaltsangabe:

<p><b>This book is a foundational guide to graph representation learning, including state-of-the art advances, and introduces the highly successful graph neural network (GNN) formalism.</b></p> <p>Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.</p> <p>It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs -- a nascent but quickly growing subset of graph representation learning.</p>

Über die Autorin bzw. den Autor: William L. Hamilton is an Assistant Professor of Computer Science at McGill University and a Canada CIFAR Chair in AI. His research focuses on graph representation learning as well as applications in computational social science and biology. In recent years, he has published more than 20 papers on graph representation learning at top-tier venues across machine learning and network science, as well as co-organized several large workshops and tutorials on the topic. William's work has been recognized by several awards, including the 2018 Arthur L. Samuel Thesis Award for the best doctoral thesis in the Computer Science department at Stanford University and the 2017 Cozzarelli Best Paper Award from the Proceedings of the National Academy of Sciences.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Graph Representation Learning
Verlag: Morgan & Claypool
Erscheinungsdatum: 2020
Einband: Softcover
Zustand: good

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Hamilton, William L.
Verlag: Morgan & Claypool, 2020
ISBN 10: 1681739631 ISBN 13: 9781681739632
Gebraucht paperback

Anbieter: HPB-Red, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_448341283

Verkäufer kontaktieren

Gebraucht kaufen

EUR 56,85
EUR 3,21 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Hamilton, William L.
Verlag: Morgan Claypool, 2020
ISBN 10: 1681739631 ISBN 13: 9781681739632
Neu Softcover

Anbieter: GoldBooks, Denver, CO, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: new. Bestandsnummer des Verkäufers 45X44_64_1681739631

Verkäufer kontaktieren

Neu kaufen

EUR 306,90
EUR 3,64 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb