Hands-on Question Answering Systems with BERT
Amit Agrawal
Verkauft von buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
AbeBooks-Verkäufer seit 23. Januar 2017
Neu - Softcover
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenVerkauft von buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
AbeBooks-Verkäufer seit 23. Januar 2017
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenNeuware -Get hands-on knowledge of how BERT (Bidirectional Encoder Representations from Transformers) can be used to develop question answering (QA) systems by using natural language processing (NLP) and deep learning.The book begins with an overview of the technology landscape behind BERT. It takes you through the basics of NLP, including natural language understanding with tokenization, stemming, and lemmatization, and bag of words. Next, yoüll look at neural networks for NLP starting with its variants such as recurrent neural networks, encoders and decoders, bi-directional encoders and decoders, and transformer models. Along the way, yoüll cover word embedding and their types along with the basics of BERT.After this solid foundation, yoüll be ready to take a deep dive into BERT algorithms such as masked language models and next sentence prediction. Yoüll see different BERT variations followed by a hands-on example of a question answering system.Hands-on Question Answering Systems with BERT is a good starting point for developers and data scientists who want to develop and design NLP systems using BERT. It provides step-by-step guidance for using BERT.What You Will LearnExamine the fundamentals of word embeddingsApply neural networks and BERT for various NLP tasksDevelop a question-answering system from scratchTrain question-answering systems for your own dataWho This Book Is ForAI and machine learning developers and natural language processing developers.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 200 pp. Englisch.
Bestandsnummer des Verkäufers 9781484266632
Get hands-on knowledge of how BERT (Bidirectional Encoder Representations from Transformers) can be used to develop question answering (QA) systems by using natural language processing (NLP) and deep learning.
The book begins with an overview of the technology landscape behind BERT. It takes you through the basics of NLP, including natural language understanding with tokenization, stemming, and lemmatization, and bag of words. Next, you'll look at neural networks for NLP starting with its variants such as recurrent neural networks, encoders and decoders, bi-directional encoders and decoders, and transformer models. Along the way, you'll cover word embedding and their types along with the basics of BERT.
After this solid foundation, you'll be ready to take a deep dive into BERT algorithms such as masked language models and next sentence prediction. You'll see different BERT variations followed by a hands-on example of a question answering system.
Hands-on Question Answering Systems with BERT is a good starting point for developers and data scientists who want to develop and design NLP systems using BERT. It provides step-by-step guidance for using BERT.
What You Will Learn
Who This Book Is For
AI and machine learning developers and natural language processing developers.
Navin is the chief architect for HCL DryICE Autonomics. He is an innovator, thought leader, author, and consultant in the areas of AI, machine learning, cloud computing, big data analytics, and software product development. He is responsible for IP development and service delivery in the areas of AI and machine learning, automation, AIOPS, public cloud GCP, AWS, and Microsoft Azure. Navin has authored 15+ books in the areas of cloud computing , cognitive virtual agents, IBM Watson, GCP, containers, and microservices.
Amit Agrawal is a senior data scientist and researcher delivering solutions in the fields of AI and machine learning. He is responsible for designing end-to-end solutions and architecture for enterprise products. He has also authored and reviewed books in the area of cognitive virtual assistants.„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden kann.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen vierzehn Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerru...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.