HandsOn Gradient Boosting with

Wade, Corey

ISBN 10: 1839218355 ISBN 13: 9781839218354
Verlag: Packt Publishing, 2020
Gebraucht Softcover

Verkäufer World of Books (was SecondSale), Montgomery, IL, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 20. Dezember 2007


Beschreibung

Beschreibung:

Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00082791791

Diesen Artikel melden

Inhaltsangabe:

Get to grips with building robust XGBoost models using Python and scikit-learn for deployment

Key Features

  • Get up and running with machine learning and understand how to boost models with XGBoost in no time
  • Build real-world machine learning pipelines and fine-tune hyperparameters to achieve optimal results
  • Discover tips and tricks and gain innovative insights from XGBoost Kaggle winners

Book Description

XGBoost is an industry-proven, open-source software library that provides a gradient boosting framework for scaling billions of data points quickly and efficiently.

The book introduces machine learning and XGBoost in scikit-learn before building up to the theory behind gradient boosting. You'll cover decision trees and analyze bagging in the machine learning context, learning hyperparameters that extend to XGBoost along the way. You'll build gradient boosting models from scratch and extend gradient boosting to big data while recognizing speed limitations using timers. Details in XGBoost are explored with a focus on speed enhancements and deriving parameters mathematically. With the help of detailed case studies, you'll practice building and fine-tuning XGBoost classifiers and regressors using scikit-learn and the original Python API. You'll leverage XGBoost hyperparameters to improve scores, correct missing values, scale imbalanced datasets, and fine-tune alternative base learners. Finally, you'll apply advanced XGBoost techniques like building non-correlated ensembles, stacking models, and preparing models for industry deployment using sparse matrices, customized transformers, and pipelines.

By the end of the book, you'll be able to build high-performing machine learning models using XGBoost with minimal errors and maximum speed.

What you will learn

  • Build gradient boosting models from scratch
  • Develop XGBoost regressors and classifiers with accuracy and speed
  • Analyze variance and bias in terms of fine-tuning XGBoost hyperparameters
  • Automatically correct missing values and scale imbalanced data
  • Apply alternative base learners like dart, linear models, and XGBoost random forests
  • Customize transformers and pipelines to deploy XGBoost models
  • Build non-correlated ensembles and stack XGBoost models to increase accuracy

Who this book is for

This book is for data science professionals and enthusiasts, data analysts, and developers who want to build fast and accurate machine learning models that scale with big data. Proficiency in Python, along with a basic understanding of linear algebra, will help you to get the most out of this book.

Table of Contents

  1. Machine Learning Landscape
  2. Decision Trees in Depth
  3. Bagging with Random Forests
  4. From Gradient Boosting to XGBoost
  5. XGBoost Unveiled
  6. XGBoost Hyperparameters
  7. Discovering Exoplanets with XGBoost
  8. XGBoost Alternative Base Learners
  9. XGBoost Kaggle Masters
  10. XGBoost Model Deployment

Über die Autorin bzw. den Autor: Corey Wade, M.S. Mathematics, M.F.A. Writing & Consciousness, is the founder and director of Berkeley Coding Academy where he teaches Machine Learning and AI to teens from all over the world. Additionally, Corey chairs the Math Department at Berkeley Independent Study where he has received multiple grants to run after-school coding programs to help bridge the tech skills gap. Additional experiences include teaching Natural Language Processing with Hello World, developing Data Science curricula with Pathstream, and publishing statistics and machine learning models with Towards Data Science, Springboard, and Medium.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: HandsOn Gradient Boosting with
Verlag: Packt Publishing
Erscheinungsdatum: 2020
Einband: Softcover
Zustand: Very Good

Beste Suchergebnisse bei AbeBooks

Foto des Verkäufers

Wade, Corey
Verlag: Packt Publishing, 2020
ISBN 10: 1839218355 ISBN 13: 9781839218354
Gebraucht Softcover

Anbieter: Goodwill Southern California, Los Angeles, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: good. Bestandsnummer des Verkäufers 4CJH0200BPVL

Verkäufer kontaktieren

Gebraucht kaufen

EUR 35,65
EUR 2,53 Versand
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Wade, Corey
ISBN 10: 1839218355 ISBN 13: 9781839218354
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 401730361

Verkäufer kontaktieren

Neu kaufen

EUR 48,14
EUR 7,49 Versand
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Wade, Corey
Verlag: Packt Publishing, 2020
ISBN 10: 1839218355 ISBN 13: 9781839218354
Neu Softcover

Anbieter: GoldBooks, Denver, CO, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: new. Bestandsnummer des Verkäufers 14E31_32_1839218355

Verkäufer kontaktieren

Neu kaufen

EUR 85,35
EUR 3,58 Versand
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb