Verkäufer
AussieBookSeller, Truganina, VIC, Australien
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 22. Juni 2007
Paperback. The VITAL specification addresses the issues of interoperability, backannotation and high performance simulation for sign-off quality ASIC libraries in VHDL. VITAL provides modeling guidelines and a set of pre-defined packages (containing pre-defined routines for modeling functionality and timing) to facilitate the acceleration of designs which use cells from a VITAL library. The VITAL Level-I guidelines constrain the modeling capabilities provided by VHDL in order to facilitate higher performance (Figure I). Accumulating "gains" Constrained "flexibility" Higher performance & Increased capacity Benefits Flexibility FujI VHDL 1076 Figure 1: VHDL and VITAL Even within the Level-I guidelines, there are several ways in which a model can be written. In this chapter, we highlight the various modeling trade-offs and provide guidelines which can be used for developing efficient models. We will also discuss the techniques that can be used by tool developers to accelerate the simulation of VIT AL based designs. 2.2. OVERVIEW OF A VITAL LEVEL-l ARCIDTECTURE The VITAL specification is versatile enough to support several modeling styles e.g., distributed delay style, pin-to-pin delay style etc. In general, a VITAL Level-I model can have the structure illustrated in Figure 2. VITAL provides modeling guidelines and a set of pre-defined packages (containing pre-defined routines for modeling functionality and timing) to facilitate the acceleration of designs which use cells from a VITAL library. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9781461285793
The VITAL specification addresses the issues of interoperability, backannotation and high performance simulation for sign-off quality ASIC libraries in VHDL. VITAL provides modeling guidelines and a set of pre-defined packages (containing pre-defined routines for modeling functionality and timing) to facilitate the acceleration of designs which use cells from a VITAL library. The VITAL Level-I guidelines constrain the modeling capabilities provided by VHDL in order to facilitate higher performance (Figure I). Accumulating "gains" Constrained "flexibility" Higher performance & Increased capacity Benefits Flexibility FujI VHDL 1076 Figure 1: VHDL and VITAL Even within the Level-I guidelines, there are several ways in which a model can be written. In this chapter, we highlight the various modeling trade-offs and provide guidelines which can be used for developing efficient models. We will also discuss the techniques that can be used by tool developers to accelerate the simulation of VIT AL based designs. 2.2. OVERVIEW OF A VITAL LEVEL-l ARCIDTECTURE The VITAL specification is versatile enough to support several modeling styles e.g., distributed delay style, pin-to-pin delay style etc. In general, a VITAL Level-I model can have the structure illustrated in Figure 2.
Reseña del editor: The VITAL specification addresses the issues of interoperability, backannotation and high performance simulation for sign-off quality ASIC libraries in VHDL. VITAL provides modeling guidelines and a set of pre-defined packages (containing pre-defined routines for modeling functionality and timing) to facilitate the acceleration of designs which use cells from a VITAL library. The VITAL Level-I guidelines constrain the modeling capabilities provided by VHDL in order to facilitate higher performance (Figure I). Accumulating "gains" Constrained "flexibility" Higher performance & Increased capacity Benefits Flexibility FujI VHDL 1076 Figure 1: VHDL and VITAL Even within the Level-I guidelines, there are several ways in which a model can be written. In this chapter, we highlight the various modeling trade-offs and provide guidelines which can be used for developing efficient models. We will also discuss the techniques that can be used by tool developers to accelerate the simulation of VIT AL based designs. 2.2. OVERVIEW OF A VITAL LEVEL-l ARCIDTECTURE The VITAL specification is versatile enough to support several modeling styles e.g., distributed delay style, pin-to-pin delay style etc. In general, a VITAL Level-I model can have the structure illustrated in Figure 2.
Titel: Hardware Component Modeling (Paperback)
Verlag: Springer-Verlag New York Inc., New York, NY
Erscheinungsdatum: 2011
Einband: Paperback
Zustand: new
Anbieter: BOOKWEST, Phoenix, AZ, USA
Soft cover. Zustand: New. SHRINK-WRAPPED NEW: US SELLER SHIPS FAST FROM USA. Bestandsnummer des Verkäufers 132D14-0792396863
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The VITAL specification addresses the issues of interoperability, backannotation and high performance simulation for sign-off quality ASIC libraries in VHDL. VITAL provides modeling guidelines and a set of pre-defined packages (containing pre-defined routin. Bestandsnummer des Verkäufers 4191144
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2716030029837
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The VITAL specification addresses the issues of interoperability, backannotation and high performance simulation for sign-off quality ASIC libraries in VHDL. VITAL provides modeling guidelines and a set of pre-defined packages (containing pre-defined routines for modeling functionality and timing) to facilitate the acceleration of designs which use cells from a VITAL library. The VITAL Level-I guidelines constrain the modeling capabilities provided by VHDL in order to facilitate higher performance (Figure I). Accumulating 'gains' Constrained 'flexibility' Higher performance & Increased capacity Benefits Flexibility FujI VHDL 1076 Figure 1: VHDL and VITAL Even within the Level-I guidelines, there are several ways in which a model can be written. In this chapter, we highlight the various modeling trade-offs and provide guidelines which can be used for developing efficient models. We will also discuss the techniques that can be used by tool developers to accelerate the simulation of VIT AL based designs. 2.2. OVERVIEW OF A VITAL LEVEL-l ARCIDTECTURE The VITAL specification is versatile enough to support several modeling styles e.g., distributed delay style, pin-to-pin delay style etc. In general, a VITAL Level-I model can have the structure illustrated in Figure 2.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch. Bestandsnummer des Verkäufers 9781461285793
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781461285793_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The VITAL specification addresses the issues of interoperability, backannotation and high performance simulation for sign-off quality ASIC libraries in VHDL. VITAL provides modeling guidelines and a set of pre-defined packages (containing pre-defined routines for modeling functionality and timing) to facilitate the acceleration of designs which use cells from a VITAL library. The VITAL Level-I guidelines constrain the modeling capabilities provided by VHDL in order to facilitate higher performance (Figure I). Accumulating 'gains' Constrained 'flexibility' Higher performance & Increased capacity Benefits Flexibility FujI VHDL 1076 Figure 1: VHDL and VITAL Even within the Level-I guidelines, there are several ways in which a model can be written. In this chapter, we highlight the various modeling trade-offs and provide guidelines which can be used for developing efficient models. We will also discuss the techniques that can be used by tool developers to accelerate the simulation of VIT AL based designs. 2.2. OVERVIEW OF A VITAL LEVEL-l ARCIDTECTURE The VITAL specification is versatile enough to support several modeling styles e.g., distributed delay style, pin-to-pin delay style etc. In general, a VITAL Level-I model can have the structure illustrated in Figure 2. Bestandsnummer des Verkäufers 9781461285793
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. xviii + 134. Bestandsnummer des Verkäufers 2658576988
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. xviii + 134. Bestandsnummer des Verkäufers 51015555
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. xviii + 134. Bestandsnummer des Verkäufers 1858576982
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 155 pages. 9.45x6.30x0.36 inches. In Stock. Bestandsnummer des Verkäufers x-1461285798
Anzahl: 2 verfügbar