Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide (Paperback or Softback)

Bartz, Eva

ISBN 10: 9811951721 ISBN 13: 9789811951725
Verlag: Springer 12/19/2022, 2022
Neu Paperback or Softback

Verkäufer BargainBookStores, Grand Rapids, MI, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 23. Januar 2002


Beschreibung

Beschreibung:

Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide. Bestandsnummer des Verkäufers BBS-9789811951725

Diesen Artikel melden

Inhaltsangabe:

This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required.

The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.


Über die Autorin bzw. den Autor: Eva Bartz is an expert in law and data protection. Within the wide area of data protection, she specializes particularly in the application of artificial intelligence and its benefits and dangers. Based on this vast experience, she founded Bartz & Bartz GmbH in 2014 together with Thomas Bartz-Beielstein and offers consulting for a variety of customers. She translates the academic expertise of Bartz & Bartz GmbH’s advisors - who are leading experts in their fields - into a benefit for her customers. One of these customers was the Federal Statistical Office of Germany (Destatis), and the study for them laid the groundwork for this book. 

Prof. Dr. Thomas Bartz-Beielstein is an artificial intelligence expert with 30+ years of experience. He is a professor of applied mathematics at TH Köln in Germany and the director of the Institute for Data Science, Engineering, and Analytics (IDE+A). His research lies in artificial intelligence, machine learning, simulation, and optimization. Hedeveloped the Sequential Parameter Optimization (SPO). SPO integrates approaches from surrogate model-based optimization and evolutionary computing. He has worked on diverse topics from applied mathematics and statistics, design of experiments, simulation-based optimization and applications in domains as water industry, elevator control, or mechanical engineering.

Prof. Dr. Martin Zaefferer is a professor at Duale Hochschule Baden-Württemberg Ravensburg, teaching subjects related to data science in business informatics. Previously, he worked as a consultant at Bartz & Bartz GmbH and as a researcher at TH Köln, where he also studied electrical engineering and automation. He received a PhD from the Department of Computer Science at TU Dortmund University. Subsequently, he developed a keen interest in researching methods from the intersection of optimization and machine learning algorithms. He is passionate about the analysis of complex processes and finding novel solutions to challenging real-world problems.

Prof. Dr. Olaf Mersmann is a professor of data science at TH Köln-University of Applied Sciences in Germany and a member of the Institute for Data Science, Engineering, and Analytics (IDE+A). Having studied physics, statistics and data science, his research interests include landscape analysis for black box optimization problems and industrial machine learning applications. He is one of the developers of the exploratory landscape analysis approach to characterize continuous function landscapes.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Hyperparameter Tuning for Machine and Deep ...
Verlag: Springer 12/19/2022
Erscheinungsdatum: 2022
Einband: Paperback or Softback
Zustand: New
Art des Buches: Book

Beste Suchergebnisse bei AbeBooks

Foto des Verkäufers

ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the . Bestandsnummer des Verkäufers 668479473

Verkäufer kontaktieren

Neu kaufen

EUR 39,60
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Eva Bartz (u. a.)
Verlag: Springer, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Hyperparameter Tuning for Machine and Deep Learning with R | A Practical Guide | Eva Bartz (u. a.) | Taschenbuch | xvii | Englisch | 2022 | Springer | EAN 9789811951725 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Bestandsnummer des Verkäufers 122056481

Verkäufer kontaktieren

Neu kaufen

EUR 41,25
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Eva Bartz
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required.The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 344 pp. Englisch. Bestandsnummer des Verkäufers 9789811951725

Verkäufer kontaktieren

Neu kaufen

EUR 42,79
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Eva Bartz
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike. 344 pp. Englisch. Bestandsnummer des Verkäufers 9789811951725

Verkäufer kontaktieren

Neu kaufen

EUR 42,79
EUR 23,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Bartz, Eva
Verlag: Springer 2022-12, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu PF

Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9789811951725

Verkäufer kontaktieren

Neu kaufen

EUR 43,96
EUR 17,70 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 10 verfügbar

In den Warenkorb

Foto des Verkäufers

Eva Bartz
Verlag: Springer, Springer, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike. Bestandsnummer des Verkäufers 9789811951725

Verkäufer kontaktieren

Neu kaufen

EUR 48,53
EUR 62,61 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9789811951725

Verkäufer kontaktieren

Neu kaufen

EUR 58,74
Versand gratis
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Bartz, Eva (Editor)/ Bartz-beielstein, Thomas (Editor)/ Zaefferer, Martin (Editor)/ Mersmann, Olaf (Editor)
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 340 pages. 9.25x6.10x0.72 inches. In Stock. Bestandsnummer des Verkäufers x-9811951721

Verkäufer kontaktieren

Neu kaufen

EUR 71,92
EUR 11,43 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 26395253479

Verkäufer kontaktieren

Neu kaufen

EUR 72,80
EUR 3,40 shipping
Versand innerhalb von USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 402172216

Verkäufer kontaktieren

Neu kaufen

EUR 74,21
EUR 7,43 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Es gibt 1 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen