Learning Kernel Classifiers: Theory and Algorithms
Ralf Herbrich
Verkauft von BookHolders, Towson, MD, USA
AbeBooks-Verkäufer seit 19. Juni 2001
Gebraucht - Hardcover
Zustand: Gebraucht - Befriedigend
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von BookHolders, Towson, MD, USA
AbeBooks-Verkäufer seit 19. Juni 2001
Zustand: Gebraucht - Befriedigend
Anzahl: 1 verfügbar
In den Warenkorb legen[ No Hassle 30 Day Returns ][ Ships Daily ] [ Underlining/Highlighting: NONE ] [ Writing: NONE ] [ Edition: First ] Publisher: The MIT Press Pub Date: 1/1/2002 Binding: Hardcover Pages: 366 First edition.
Bestandsnummer des Verkäufers 6841374
Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Returns: 30 day returns.
Orders usually ship within 2 business days.