Learning Probabilistic Graphical Models in R
Bellot, David
Verkauft von Toscana Books, AUSTIN, TX, USA
AbeBooks-Verkäufer seit 7. November 2023
Neu - Softcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von Toscana Books, AUSTIN, TX, USA
AbeBooks-Verkäufer seit 7. November 2023
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenExcellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Bestandsnummer des Verkäufers Scanned1784392057
Probabilistic graphical models (PGM, also known as graphical models) are a marriage between probability theory and graph theory. Generally, PGMs use a graph-based representation. Two branches of graphical representations of distributions are commonly used, namely Bayesian networks and Markov networks. R has many packages to implement graphical models.
We'll start by showing you how to transform a classical statistical model into a modern PGM and then look at how to do exact inference in graphical models. Proceeding, we'll introduce you to many modern R packages that will help you to perform inference on the models. We will then run a Bayesian linear regression and you'll see the advantage of going probabilistic when you want to do prediction.
Next, you'll master using R packages and implementing its techniques. Finally, you'll be presented with machine learning applications that have a direct impact in many fields. Here, we'll cover clustering and the discovery of hidden information in big data, as well as two important methods, PCA and ICA, to reduce the size of big problems.
David Bellot is a PhD graduate in computer science from INRIA, France, with a focus on Bayesian machine learning. He was a postdoctoral fellow at the University of California, Berkeley, and worked for companies such as Intel, Orange, and Barclays Bank. He currently works in the financial industry, where he develops financial market prediction algorithms using machine learning. He is also a contributor to open source projects such as the Boost C++ library.
David Bellot is a PhD graduate in Computer Science from Inria, France, with a focus on Bayesian machine learning. He was a postdoctoral fellow at the University of California, Berkeley and worked for companies such as Intel, Orange, or Barclays Bank. He currently works in the financial industry where he develops financial market prediction algorithms using machine learning. He is also a contributor to open source projects such as the Boost C++ library.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
All returns are accepted within 30 days.
All books will be shipped through media mail. All books will be shipped within 2 business days.
Bestellmenge | 36 bis 42 Werktage | 24 bis 30 Werktage |
---|---|---|
Erster Artikel | EUR 25.68 | EUR 38.95 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.