A least-squares, continuous sensitivity analysis method is developed for transient aeroelastic gust response problems to support computationally efficient analysis and optimization of aeroelastic design problems. A key distinction between the local and total derivative forms of the sensitivity system is introduced. The continuous sensitivity equations and sensitivity boundary conditions are derived in local derivative form which is shown to be superior for several applications. The analysis and sensitivity problems are both posed in a first-order form which is amenable to a solution using the least-squares finite element method. Several example and validation problems are presented and solved, including elasticity, fluid, and fluid-structure interaction problems. Significant contributions of the research include the first sensitivity analysis of nonlinear transient gust response, a local derivative formulation for shape variation that requires parameterizing only the boundary, and statement of sufficient conditions for using nonlinear "black box" software to solve the sensitivity equations. Promising paths for future investigation are presented and discussed.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.