Least Squares in Sampling Complexity and Statistical Learning

Felix Bartel

ISBN 10: 3961002045 ISBN 13: 9783961002047
Verlag: Universitätsverlag Chemnitz, 2024
Neu Taschenbuch

Verkäufer preigu, Osnabrück, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 5. August 2024


Beschreibung

Beschreibung:

Least Squares in Sampling Complexity and Statistical Learning | Felix Bartel | Taschenbuch | Englisch | Universitätsverlag Chemnitz | EAN 9783961002047 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 128324205

Diesen Artikel melden

Inhaltsangabe:

Data gathering is a constant in human history with ever increasing amounts in quantity and dimensionality. To get a feel for the data, make it interpretable, or find underlying laws it is necessary to fit a function to the finite and possibly noisy data. In this thesis we focus on a method achieving this, namely least squares approximation. Its discovery dates back to around 1800 and it has since then proven to be an indispensable tool which is efficient and has the capability to achieve optimal error when used right. Crucial for the least squares method are the ansatz functions and the sampling points. To discuss them, we gather tools from probability theory, frame subsampling, and L2-Marcinkiewicz-Zygmund inequalities. With that we give results in the worst-case or minmax setting, when a set of points is sought for approximating a class of functions, which we model as a generic reproducing kernel Hilbert space. Further, we give error bounds in the statistical learning setting for approximating individual functions from possibly noisy samples. Here, we include the covariate-shift setting as a subfield of transfer learning. In a natural way a parameter choice question arises for balancing over- and underfitting effect. We tackle this by using the cross-validation score, for which we show a fast way of computing as well as prove the goodness thereof.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Least Squares in Sampling Complexity and ...
Verlag: Universitätsverlag Chemnitz
Erscheinungsdatum: 2024
Einband: Taschenbuch
Zustand: Neu

Beste Suchergebnisse bei AbeBooks

Foto des Verkäufers

Felix Bartel
ISBN 10: 3961002045 ISBN 13: 9783961002047
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Data gathering is a constant in human history with ever increasing amounts in quantity and dimensionality. To get a feel for the data, make it interpretable, or find underlying laws it is necessary to fit a function to the finite and possibly noisy data. In this thesis we focus on a method achieving this, namely least squares approximation. Its discovery dates back to around 1800 and it has since then proven to be an indispensable tool which is efficient and has the capability to achieve optimal error when used right.Crucial for the least squares method are the ansatz functions and the sampling points. To discuss them, we gather tools from probability theory, frame subsampling, and L2-Marcinkiewicz-Zygmund inequalities. With that we give results in the worst-case or minmax setting, when a set of points is sought for approximating a class of functions, which we model as a generic reproducing kernel Hilbert space. Further, we give error bounds in the statistical learning setting for approximating individual functions from possibly noisy samples. Here, we include the covariate-shift setting as a subfield of transfer learning. In a natural way a parameter choice question arises for balancing over- and underfitting effect. We tackle this by using the cross-validation score, for which we show a fast way of computing as well as prove the goodness thereof. Bestandsnummer des Verkäufers 9783961002047

Verkäufer kontaktieren

Neu kaufen

EUR 14,90
EUR 61,57 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Felix Bartel
ISBN 10: 3961002045 ISBN 13: 9783961002047
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data gathering is a constant in human history with ever increasing amounts in quantity and dimensionality. To get a feel for the data, make it interpretable, or find underlying laws it is necessary to fit a function to the finite and possibly noisy data. In this thesis we focus on a method achieving this, namely least squares approximation. Its discovery dates back to around 1800 and it has since then proven to be an indispensable tool which is efficient and has the capability to achieve optimal error when used right.Crucial for the least squares method are the ansatz functions and the sampling points. To discuss them, we gather tools from probability theory, frame subsampling, and L2-Marcinkiewicz-Zygmund inequalities. With that we give results in the worst-case or minmax setting, when a set of points is sought for approximating a class of functions, which we model as a generic reproducing kernel Hilbert space. Further, we give error bounds in the statistical learning setting for approximating individual functions from possibly noisy samples. Here, we include the covariate-shift setting as a subfield of transfer learning. In a natural way a parameter choice question arises for balancing over- and underfitting effect. We tackle this by using the cross-validation score, for which we show a fast way of computing as well as prove the goodness thereof. 212 pp. Englisch. Bestandsnummer des Verkäufers 9783961002047

Verkäufer kontaktieren

Neu kaufen

EUR 14,90
EUR 23,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb