Longitudinal Structural Equation Modeling, Second Edition
Todd D. Little
Verkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Neu - Hardcover
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenVerkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenThis valuable book is now in a fully updated second edition that presents the latest developments in longitudinal structural equation modeling (SEM) and new chapters on missing data, the random intercepts cross-lagged panel model (RI-CLPM), longitudinal mixture modeling, and Bayesian SEM. Emphasizing a decision-making approach, leading methodologist Todd D. Little describes the steps of modeling a longitudinal change process. He explains the big picture and technical how-tos of using longitudinal confirmatory factor analysis, longitudinal panel models, and hybrid models for analyzing within-person change. User-friendly features include equation boxes that translate all the elements in every equation, tips on what does and doesn't work, end-of-chapter glossaries, and annotated suggestions for further reading. The companion website provides data sets for the examples--including studies of bullying and victimization, adolescents' emotions, and healthy aging--along with syntax and output, chapter quizzes, and the book's figures. New to This Edition: *Chapter on missing data, with a spotlight on planned missing data designs and the R-based package PcAux. *Chapter on longitudinal mixture modeling, with Whitney Moore. *Chapter on the random intercept cross-lagged panel model (RI-CLPM), with Danny Osborne. *Chapter on Bayesian SEM, with Mauricio Garnier. *Revised throughout with new developments and discussions, such as how to test models of experimental effects.
Bestandsnummer des Verkäufers LU-9781462553143
This valuable book is now in a fully updated second edition that presents the latest developments in longitudinal structural equation modeling (SEM) and new chapters on missing data, the random intercepts cross-lagged panel model (RI-CLPM), longitudinal mixture modeling, and Bayesian SEM. Emphasizing a decision-making approach, leading methodologist Todd D. Little describes the steps of modeling a longitudinal change process. He explains the big picture and technical how-tos of using longitudinal confirmatory factor analysis, longitudinal panel models, and hybrid models for analyzing within-person change. User-friendly features include equation boxes that translate all the elements in every equation, tips on what does and doesn't work, end-of-chapter glossaries, and annotated suggestions for further reading. The companion website provides data sets for the examples--including studies of bullying and victimization, adolescents' emotions, and healthy aging--along with syntax and output, chapter quizzes, and the book’s figures.
New to This Edition:
*Chapter on missing data, with a spotlight on planned missing data designs and the R-based package PcAux.
*Chapter on longitudinal mixture modeling, with Whitney Moore.
*Chapter on the random intercept cross-lagged panel model (RI-CLPM), with Danny Osborne.
*Chapter on Bayesian SEM, with Mauricio Garnier.
*Revised throughout with new developments and discussions, such as how to test models of experimental effects.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.