Machine Learning Engineering with Python
Andrew P. McMahon
Verkauft von Rarewaves.com UK, London, Vereinigtes Königreich
AbeBooks-Verkäufer seit 11. Juni 2025
Neu - Softcover
Zustand: New
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenVerkauft von Rarewaves.com UK, London, Vereinigtes Königreich
AbeBooks-Verkäufer seit 11. Juni 2025
Zustand: New
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenMachine learning engineering is an in-demand skill set, and it can be difficult to find a helpful guide on the topic. This fully updated second edition will help you solve business problems by addressing the pain points in creating standardized pipelines for taking proof-of-concept ML models to production and producing trustworthy results.
Bestandsnummer des Verkäufers LU-9781837631964
Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problems
Includes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChain
The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field.
The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift.
Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques.
With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.
This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you're not a developer but want to manage or understand the product lifecycle of these systems, you'll also find this book useful. It assumes a basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Russia
Belarus
Ukraine
Israel
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.