Machine Learning For Multimedia Content Analysis (Hb)
Gong, Yihong; Xu, Wei
Verkauft von SMASS Sellers, IRVING, TX, USA
AbeBooks-Verkäufer seit 22. Februar 2022
Neu - Hardcover
Zustand: Neu
Anzahl: 5 verfügbar
In den Warenkorb legenVerkauft von SMASS Sellers, IRVING, TX, USA
AbeBooks-Verkäufer seit 22. Februar 2022
Zustand: Neu
Anzahl: 5 verfügbar
In den Warenkorb legenBrand New Original US Edition. Customer service! Satisfaction Guaranteed.
Bestandsnummer des Verkäufers ASNT3-76367
This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).
Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. A number of pixels in a digital image collectively conveys certain visual content to viewers. A TV video program consists of both audio and image streams that unfold the underlying story. To recognize the visual content of a digital image, or to understand the underlying story of a video program, we may need to label sets of pixels or groups of image and audio frames jointly.
Machine Learning for Multimedia Content Analysis introduces machine learning techniques that are particularly powerful and effective for modeling spatial, temporal structures of multimedia data and for accomplishing common tasks of multimedia content analysis. This book systematically covers these techniques in an intuitive fashion and demonstrates their applications through case studies. This volume uses a large number of figures to illustrate and visualize complex concepts, and provides insights into the characteristics of many algorithms through examinations of their loss functions and straightforward comparisons.
Machine Learning for Multimedia Content Analysis is designed for an academic and professional audience. Researchers will find this book an invaluable tool for applying machine learning techniques to multimedia content analysis. This volume is also suitable for practitioners in industry.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
We sell Brand New Textbooks requied for studies in the Univesity. We have been in this business for the past 14 years and we know how to keep our customers happy and satisfies by providing them the required course material and the most affordable prices.
We ship all orders from our Multiple warehouses by Tracakble method only. We have tie up with Fedex, DHL, UPS and USPS for our logistics requirements. All tracking numbers are available within 48 hours of processing the order.
Bestellmenge | 10 bis 15 Werktage | 5 bis 8 Werktage |
---|---|---|
Erster Artikel | EUR 0.00 | EUR 0.00 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.