Machine Learning in Production: Developing and Optimizing Data Science Workflows and Applications (Addison-Wesley Data & Analytics Series)

Kelleher, Andrew; Kelleher, Adam

ISBN 10: 0134116542 ISBN 13: 9780134116549
Verlag: Addison-Wesley Professional (edition 1), 2019
Gebraucht Paperback

Verkäufer BooksRun, Philadelphia, PA, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 2. Februar 2016


Beschreibung

Beschreibung:

Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 0134116542-11-1

Diesen Artikel melden

Inhaltsangabe:

The typical data science task in industry starts with an “ask” from the business. But few data scientists have been taught what to do with that ask. This book shows them how to assess it in the context of the business’s goals, reframe it to work optimally for both the data scientist and the employer, and then execute on it. Written by two of the experts who’ve achieved breakthrough optimizations at BuzzFeed, it’s packed with real-world examples that take you from start to finish: from ask to actionable insight.

 

Andrew Kelleher and Adam Kelleher walk you through well-formed, concrete principles for approaching common data science problems, giving you an easy-to-use checklist for effective execution. Using their principles and techniques, you’ll gain deeper understanding of your data, learn how to analyze noise and confounding variables so they don’t compromise your analysis, and save weeks of iterative improvement by planning your projects more effectively upfront.

 

Once you’ve mastered their principles, you’ll put them to work in two realistic, beginning-to-end site optimization tasks. These extended examples come complete with reusable code examples and recommended open-source solutions designed for easy adaptation to your everyday challenges. They will be especially valuable for anyone seeking their first data science job -- and everyone who’s found that job and wants to succeed in it.

Über die Autorin bzw. den Autor:

Andrew Kelleher is a staff software engineer and distributed systems architect at Venmo. He was previously a staff software engineer at BuzzFeed and has worked on data pipelines and algorithm implementations for modern optimization. He graduated with a BS in physics from Clemson University. He runs a meetup in New York City that studies the fundamentals behind distributed systems in the context of production applications, and was ranked one of FastCompany's most creative people two years in a row.

 

Adam Kelleher wrote this book while working as principal data scientist at BuzzFeed and adjunct professor at Columbia University in the City of New York. As of May 2018, he is chief data scientist for research at Barclays and teaches causal inference and machine learning products at Columbia. He graduated from Clemson University with a BS in physics, and has a PhD in cosmology from University of North Carolina at Chapel Hill.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Machine Learning in Production: Developing ...
Verlag: Addison-Wesley Professional (edition 1)
Erscheinungsdatum: 2019
Einband: Paperback
Zustand: Good
Auflage: 1.

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Kelleher, Adam,Kelleher, Andrew
ISBN 10: 0134116542 ISBN 13: 9780134116549
Gebraucht Paperback

Anbieter: HPB-Red, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_444229447

Verkäufer kontaktieren

Gebraucht kaufen

EUR 13,99
EUR 3,19 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kelleher, Andrew
ISBN 10: 0134116542 ISBN 13: 9780134116549
Gebraucht paperback

Anbieter: Sugarhouse Book Works, LLC, Salt Lake City, UT, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: LikeNew. As pictured. Very slight edge wear. No marks or creases throughout. Nearly new. Carefully packed and promptly shipped. Bestandsnummer des Verkäufers 238IF80011RS

Verkäufer kontaktieren

Gebraucht kaufen

EUR 16,18
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kelleher, Andrew; Kelleher, Adam
ISBN 10: 0134116542 ISBN 13: 9780134116549
Gebraucht Paperback

Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Bestandsnummer des Verkäufers G0134116542I4N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 17,48
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kelleher, Andrew; Kelleher, Adam
ISBN 10: 0134116542 ISBN 13: 9780134116549
Gebraucht Soft cover Erstausgabe

Anbieter: bmyguest books, Toronto, ON, Kanada

Verkäuferbewertung 3 von 5 Sternen 3 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Soft cover. Zustand: Very Good. 1st Edition. 256 Pages With An Index. In Very Good Condition. Soft Cover,books are NOT signed. We will state signed at the description section. we confirm they are signed via email or stated in the description box. - Specializing in academic, collectiblle and historically significant, providing the utmost quality and customer service satisfaction. For any questions feel free to email us. Bestandsnummer des Verkäufers A9304a

Verkäufer kontaktieren

Gebraucht kaufen

EUR 32,58
EUR 12,75 shipping
Versand von Kanada nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kelleher Andrew
Verlag: Prentice-Hall, 2019
ISBN 10: 0134116542 ISBN 13: 9780134116549
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 370834013

Verkäufer kontaktieren

Neu kaufen

EUR 37,62
EUR 7,40 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kelleher, Andrew; Kelleher, Adam
ISBN 10: 0134116542 ISBN 13: 9780134116549
Neu Softcover

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-327611

Verkäufer kontaktieren

Neu kaufen

EUR 38,72
Versand gratis
Versand innerhalb von USA

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrew Kelleher
Verlag: Prentice-Hall, 2019
ISBN 10: 0134116542 ISBN 13: 9780134116549
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st Edition. Bestandsnummer des Verkäufers 26376292738

Verkäufer kontaktieren

Neu kaufen

EUR 39,08
EUR 3,39 shipping
Versand innerhalb von USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kelleher Andrew
Verlag: Prentice-Hall, 2019
ISBN 10: 0134116542 ISBN 13: 9780134116549
Neu Softcover

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 18376292744

Verkäufer kontaktieren

Neu kaufen

EUR 39,37
EUR 9,95 shipping
Versand von Deutschland nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrew Kelleher
ISBN 10: 0134116542 ISBN 13: 9780134116549
Neu Paperback

Anbieter: Grand Eagle Retail, Bensenville, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Machine Learning in Production is a crash course in data science and machine learning for people who need to solve real-world problems in production environments. Written for technically competent accidental data scientists with more curiosity and ambition than formal training, this complete and rigorous introduction stresses practice, not theory. Building on agile principles, Andrew and Adam Kelleher show how to quickly deliver significant value in production, resisting overhyped tools and unnecessary complexity. Drawing on their extensive experience, they help you ask useful questions and then execute production projects from start to finish. The authors show just how much information you can glean with straightforward queries, aggregations, and visualisations, and they teach indispensable error analysis methods to avoid costly mistakes. They turn to workhorse machine learning techniques such as linear regression, classification, clustering, and Bayesian inference, helping you choose the right algorithm for each production problem. Their concluding section on hardware, infrastructure, and distributed systems offers unique and invaluable guidance on optimisation in production environments. Andrew and Adam always focus on what matters in production: solving the problems that offer the highest return on investment, using the simplest, lowest-risk approaches that work. Leverage agile principles to maximise development efficiency in production projects Learn from practical Python code examples and visualisations that bring essential algorithmic concepts to life Start with simple heuristics and improve them as your data pipeline matures Avoid bad conclusions by implementing foundational error analysis techniques Communicate your results with basic data visualisation techniques Master basic machine learning techniques, starting with linear regression and random forests Perform classification and clustering on both vector and graph data Learn the basics of graphical models and Bayesian inference Understand correlation and causation in machine learning models Explore overfitting, model capacity, and other advanced machine learning techniques Make informed architectural decisions about storage, data transfer, computation, and communication Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9780134116549

Verkäufer kontaktieren

Neu kaufen

EUR 49,27
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrew Kelleher
ISBN 10: 0134116542 ISBN 13: 9780134116549
Neu Paperback

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Machine Learning in Production is a crash course in data science and machine learning for people who need to solve real-world problems in production environments. Written for technically competent accidental data scientists with more curiosity and ambition than formal training, this complete and rigorous introduction stresses practice, not theory. Building on agile principles, Andrew and Adam Kelleher show how to quickly deliver significant value in production, resisting overhyped tools and unnecessary complexity. Drawing on their extensive experience, they help you ask useful questions and then execute production projects from start to finish. The authors show just how much information you can glean with straightforward queries, aggregations, and visualisations, and they teach indispensable error analysis methods to avoid costly mistakes. They turn to workhorse machine learning techniques such as linear regression, classification, clustering, and Bayesian inference, helping you choose the right algorithm for each production problem. Their concluding section on hardware, infrastructure, and distributed systems offers unique and invaluable guidance on optimisation in production environments. Andrew and Adam always focus on what matters in production: solving the problems that offer the highest return on investment, using the simplest, lowest-risk approaches that work. Leverage agile principles to maximise development efficiency in production projects Learn from practical Python code examples and visualisations that bring essential algorithmic concepts to life Start with simple heuristics and improve them as your data pipeline matures Avoid bad conclusions by implementing foundational error analysis techniques Communicate your results with basic data visualisation techniques Master basic machine learning techniques, starting with linear regression and random forests Perform classification and clustering on both vector and graph data Learn the basics of graphical models and Bayesian inference Understand correlation and causation in machine learning models Explore overfitting, model capacity, and other advanced machine learning techniques Make informed architectural decisions about storage, data transfer, computation, and communication Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9780134116549

Verkäufer kontaktieren

Neu kaufen

EUR 53,70
EUR 31,48 shipping
Versand von Australien nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 5 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen