Machine Learning System Design
Valerii Babushkin, Arseny Kravchenko
Verkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Neu - Hardcover
Zustand: Neu
Anzahl: 10 verfügbar
In den Warenkorb legenVerkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Zustand: Neu
Anzahl: 10 verfügbar
In den Warenkorb legenGet the big picture and the important details with this end-to-end guide for designing highly effective, reliable machine learning systems.In Machine Learning System Design: With end-to-end examples you will learn: The big picture of machine learning system designAnalyzing a problem space to identify the optimal ML solutionAce ML system design interviewsSelecting appropriate metrics and evaluation criteriaPrioritizing tasks at different stages of ML system designSolving dataset-related problems through data gathering, error analysis, and feature engineeringRecognizing common pitfalls in ML system developmentDesigning ML systems to be lean, maintainable, and extensible over time Machine Learning System Design: With end-to-end examples is a practical guide for planning and designing successful ML applications. It lays out a clear, repeatable framework for building, maintaining, and improving systems at any scale. Authors Arseny Kravchenko and Valeri Babushkin have filled this unique handbook with campfire stories and personal tips from their own extensive careers. You'll learn directly from their experience as you consider every facet of a machine learning system, from requirements gathering and data sourcing to deployment and management of the finished system.
Bestandsnummer des Verkäufers LU-9781633438750
Get the big picture and the important details with this end-to-end guide for designing highly effective, reliable machine learning systems.
In Machine Learning System Design: With end-to-end examples you will learn:
Machine Learning System Design: With end-to-end examples is a practical guide for planning and designing successful ML applications. It lays out a clear, repeatable framework for building, maintaining, and improving systems at any scale. Authors Arseny Kravchenko and Valeri Babushkin have filled this unique handbook with campfire stories and personal tips from their own extensive careers. You'll learn directly from their experience as you consider every facet of a machine learning system, from requirements gathering and data sourcing to deployment and management of the finished system.
Arseny Kravchenko is a seasoned ML engineer with a proven track record of building and optimizing reliable ML systems for startups, including real-time video processing, manufacturing optimization, and financial transactions analysis.
Valerii Babushkin is an accomplished data science leader with extensive experience in the tech industry. He currently serves as the VP of Data Science at Blockchain.com, where he is responsible for leading the company's data-driven initiatives. Prior to joining Blockchain.com, Valerii held key roles at leading tech companies, such as Facebook, Alibaba, and X5 Retail Group.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.
Bestellmenge | 13 bis 16 Werktage | 13 bis 14 Werktage |
---|---|---|
Erster Artikel | EUR 0.00 | EUR 0.00 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.