2D Materials for Electronics, Sensors and Devices: Synthesis, Characterization, Fabrication and Application provides an overview of various top-down and bottom-up synthesis techniques, along with stitching, stacking and stoichiometric control methods for different 2D materials and their heterostructures. The book focuses on the widespread applications of various 2D materials in high-performance and low-power sensors, field effect devices, flexible electronics, straintronics, spintronics, brain-inspired electronics, energy harvesting and energy storage devices. This is an important reference for materials scientists and engineers looking to gain a greater understanding on how 2D materials are being used to create a range of low cost, sustainable products and devices.
- Discusses the major synthesis and preparation methods of a range of emerging 2D electronic materials
- Provides state-of-the-art information on the most recent advances, including theoretical and experimental studies and new applications
- Discusses the major challenges of the mass application of 2D materials in industry
Dr. Das received his B.Eng. degree (2007) in Electronics and Telecommunication Engineering from Jadavpur University, India, and Ph.D. degree (2013) in Electrical and Computer Engineering from Purdue University. He was a Postdoctoral Research Scholar (2013-2015) and Assistant Research Scientist (2015-2016) at Argonne National Laboratory (ANL). Dr. Das joined the Department of Engineering Science and Mechanics (ESM) at Penn State University in January 2016. Dr. Das was the recipient of Young Investigator Award from United States Air Force Office of Scientific Research in 2017 and National Science Foundation (NSF) CAREER award in 2021. Das Research Group at Penn State leads a new multidisciplinary area of science, namely biomimetic sensing, neuromorphic computing, and hardware security inspired by natural designs found in the animal world that allow evolutionary success in resource-constrained environments.