Milliken's Tree Theorem and Its Applications : A Computability-theoretic Perspective

D'auriac, Paul-elliot Angles; Cholak, Peter A.; Dzhafarov, Damir D.; Monin, Benoit

ISBN 10: 1470467313 ISBN 13: 9781470467319
Gebraucht Softcover

Verkäufer GreatBookPrices, Columbia, MD, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 6. April 2009


Beschreibung

Beschreibung:

Unread book in perfect condition. Bestandsnummer des Verkäufers 47506218

Diesen Artikel melden

Inhaltsangabe:

Milliken's tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey's theorem and its many variants and consequences. In this sense, Milliken's tree theorem is paradigmatic of structural Ramsey theory, which seeks to identify the common combinatorial and logical features of partition results in general. Its investigation in this area has consequently been extensive.

Motivated by a question of Dobrinen, we initiate the study of Milliken's tree theorem from the point of view of computability theory. The goal is to understand how close it is to being algorithmically solvable, and how computationally complex are the constructions needed to prove it. This kind of examination enjoys a long and rich history, and continues to be a highly active endeavor. Applied to combinatorial principles, particularly Ramsey's theorem, it constitutes one of the most fruitful research programs in computability theory as a whole. The challenge to studying Milliken's tree theorem using this framework is its unusually intricate proof, and more specifically, the proof of the Halpern-La¨uchli theorem, which is a key ingredient.

Our advance here stems from a careful analysis of the Halpern–Läuchli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken's tree theorem that permits us to gauge its effectivity in turn. The key combinatorial tool we develop for the inductive step is a fast-growing computable function that can be used to obtain a finitary, or localized, version of Milliken's tree theorem. This enables us to build solutions to the full Milliken's tree theorem using effective forcing. The principal result of this is a full classification of the computable content of Milliken's tree theorem in terms of the jump hierarchy, stratified by the size of instance. As usual, this also translates into the parlance of reverse mathematics, yielding a complete understanding of the fragment of second-order arithmetic required to prove Milliken's tree theorem.

We apply our analysis also to several well-known applications of Milliken's tree theorem, namely Devlin's theorem, a partition theorem for Rado graphs, and a generalized version of the so-called tree theorem of Chubb, Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey's theorem for different structures, namely the rational numbers, the Rado graph, and perfect binary trees, respectively. We obtain a number of new results about how these principles relate to Milliken's tree theorem and to each other, in terms of both their computability-theoretic and combinatorial aspects. In particular, we establish new structural Ramsey-theoretic properties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl tree theorem using Zucker's notion of big Ramsey structure.

Über die Autorin bzw. den Autor: Paul-Elliot Angles D'Auriac, Universite Claude Bernard Lyon 1, France.

Peter A. Cholak, University of Notre Dame, Indiana.

Damir D. Dzhafarov, University of Connecticut, Storrs, Connecticut.

Benoit Monin, Laboratoire d'Algorithmique, Complexite et Logique (LACL), Paris, France.

Ludovic Patey, Universite Claude Bernard Lyon 1, France.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Milliken's Tree Theorem and Its Applications...
Einband: Softcover
Zustand: As New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Pauland#8211;elliot Ang D`auriac
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9781470467319

Verkäufer kontaktieren

Neu kaufen

EUR 79,50
Versand: EUR 3,72
Von Vereinigtes Königreich nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Paulelliot Ang D`auriac|Peter A. Cholak|Damir D. Dzhafarov|Benoit Monin|Ludovic Patey
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 2148729604

Verkäufer kontaktieren

Neu kaufen

EUR 87,55
Versand: EUR 48,99
Von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Paul-Elliot Angles D'Auriac, Peter A. Cholak, Damir D. Dzhafarov, Benoit Monin, Ludovic Patey
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Paperback

Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Milliken's tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey's theorem and its many variants and consequences. In this sense, Milliken's tree theorem is paradigmatic of structural Ramsey theory, which seeks to identify the common combinatorial and logical features of partition results in general. Its investigation in this area has consequently been extensive.Motivated by a question of Dobrinen, we initiate the study of Milliken's tree theorem from the point of view of computability theory. The goal is to understand how close it is to being algorithmically solvable, and how computationally complex are the constructions needed to prove it. This kind of examination enjoys a long and rich history, and continues to be a highly active endeavor. Applied to combinatorial principles, particularly Ramsey's theorem, it constitutes one of the most fruitful research programs in computability theory as a whole. The challenge to studying Milliken's tree theorem using this framework is its unusually intricate proof, and more specifically, the proof of the Halpern-La¨uchli theorem, which is a key ingredient.Our advance here stems from a careful analysis of the Halpern-Läuchli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken's tree theorem that permits us to gauge its effectivity in turn. The key combinatorial tool we develop for the inductive step is a fast-growing computable function that can be used to obtain a finitary, or localized, version of Milliken's tree theorem. This enables us to build solutions to the full Milliken's tree theorem using effective forcing. The principal result of this is a full classification of the computable content of Milliken's tree theorem in terms of the jump hierarchy, stratified by the size of instance. As usual, this also translates into the parlance of reverse mathematics, yielding a complete understanding of the fragment of second-order arithmetic required to prove Milliken's tree theorem.We apply our analysis also to several well-known applications of Milliken's tree theorem, namely Devlin's theorem, a partition theorem for Rado graphs, and a generalized version of the so-called tree theorem of Chubb, Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey's theorem for different structures, namely the rational numbers, the Rado graph, and perfect binary trees, respectively. We obtain a number of new results about how these principles relate to Milliken's tree theorem and to each other, in terms of both their computability-theoretic and combinatorial aspects. In particular, we establish new structural Ramsey-theoretic properties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl tree theorem using Zucker's notion of big Ramsey structure. Bestandsnummer des Verkäufers LU-9781470467319

Verkäufer kontaktieren

Neu kaufen

EUR 87,79
Versand: EUR 73,57
Von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

D'Auriac, Paul-Elliot Angles/ Cholak, Peter A./ Dzhafarov, Damir D./ Monin, Benoit/ Patey, Ludovic
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 118 pages. In Stock. Bestandsnummer des Verkäufers __1470467313

Verkäufer kontaktieren

Neu kaufen

EUR 89,69
Versand: EUR 11,32
Von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Paul-Elliot Angles D'Auriac, Peter A. Cholak, Damir D. Dzhafarov, Benoit Monin, Ludovic Patey
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Paperback

Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Milliken's tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey's theorem and its many variants and consequences. In this sense, Milliken's tree theorem is paradigmatic of structural Ramsey theory, which seeks to identify the common combinatorial and logical features of partition results in general. Its investigation in this area has consequently been extensive.Motivated by a question of Dobrinen, we initiate the study of Milliken's tree theorem from the point of view of computability theory. The goal is to understand how close it is to being algorithmically solvable, and how computationally complex are the constructions needed to prove it. This kind of examination enjoys a long and rich history, and continues to be a highly active endeavor. Applied to combinatorial principles, particularly Ramsey's theorem, it constitutes one of the most fruitful research programs in computability theory as a whole. The challenge to studying Milliken's tree theorem using this framework is its unusually intricate proof, and more specifically, the proof of the Halpern-La¨uchli theorem, which is a key ingredient.Our advance here stems from a careful analysis of the Halpern-Läuchli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken's tree theorem that permits us to gauge its effectivity in turn. The key combinatorial tool we develop for the inductive step is a fast-growing computable function that can be used to obtain a finitary, or localized, version of Milliken's tree theorem. This enables us to build solutions to the full Milliken's tree theorem using effective forcing. The principal result of this is a full classification of the computable content of Milliken's tree theorem in terms of the jump hierarchy, stratified by the size of instance. As usual, this also translates into the parlance of reverse mathematics, yielding a complete understanding of the fragment of second-order arithmetic required to prove Milliken's tree theorem.We apply our analysis also to several well-known applications of Milliken's tree theorem, namely Devlin's theorem, a partition theorem for Rado graphs, and a generalized version of the so-called tree theorem of Chubb, Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey's theorem for different structures, namely the rational numbers, the Rado graph, and perfect binary trees, respectively. We obtain a number of new results about how these principles relate to Milliken's tree theorem and to each other, in terms of both their computability-theoretic and combinatorial aspects. In particular, we establish new structural Ramsey-theoretic properties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl tree theorem using Zucker's notion of big Ramsey structure. Bestandsnummer des Verkäufers LU-9781470467319

Verkäufer kontaktieren

Neu kaufen

EUR 99,17
Versand: Gratis
Von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Paul-Elliot Angles D'Auriac
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Paperback / softback

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. Bestandsnummer des Verkäufers B9781470467319

Verkäufer kontaktieren

Neu kaufen

EUR 101,66
Versand: EUR 15,25
Von Vereinigtes Königreich nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Paul?elliot Ang D`auriac
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Buch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware. Bestandsnummer des Verkäufers 9781470467319

Verkäufer kontaktieren

Neu kaufen

EUR 106,65
Versand: EUR 61,36
Von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb