Model Selection and Multimodel Inference (Hardcover)
Kenneth P. Burnham
Verkauft von Grand Eagle Retail, Bensenville, IL, USA
AbeBooks-Verkäufer seit 12. Oktober 2005
Neu - Hardcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von Grand Eagle Retail, Bensenville, IL, USA
AbeBooks-Verkäufer seit 12. Oktober 2005
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenHardcover. This book is unique in that it covers the philosophy of model-based data analysis and a strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. Kullback-Leibler Information represents a fundamental quantity in science and is Hirotugu Akaike's basis for model selection. The maximized log-likelihood function can be bias-corrected to provide an estimate of expected, relative Kullback-Leibler information. This leads to Akaike's Information Criterion (AIC) and various extensions. These are relatively simple and easy to use in practice. The information theoretic approaches provide a unified and rigorous theory, an extension of likelihood theory, an important application of information theory, and are objective and practical to employ across a very wide class of empirical problems.Model selection, under the information theoretic approach presented here, attempts to identify the (likely) best model, orders the models from best to worst, and measures the plausibility ("calibration") that each model is really the best as an inference. Model selection methods are extended to allow inference from more than a single "best" model. The book presents several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. This is an applied book written primarily for biologists and statisticians using models for making inferences from empirical data. People interested in the empirical sciences will find this material useful as it offers an alternative to hypothesis testing and Bayesian. Statisticians and applied scientists often must select a model to fit empirical data. This book introduces researchers and graduate students in many areas to an information criterion approach, first introduced by Hirotugu Akaike in 1973. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Bestandsnummer des Verkäufers 9780387953649
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
We guarantee the condition of every book as it¿s described on the Abebooks web sites. If you¿ve changed
your mind about a book that you¿ve ordered, please use the Ask bookseller a question link to contact us
and we¿ll respond within 2 business days.
Books ship from California and Michigan.
Orders usually ship within 2 business days. All books within the US ship free of charge. Delivery is 4-14 business days anywhere in the United States.
Books ship from California and Michigan.
If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Bestellmenge | 6 bis 16 Werktage | 6 bis 14 Werktage |
---|---|---|
Erster Artikel | EUR 0.00 | EUR 0.00 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.