Modeling Correlated Outcomes Using Extensions of Generalized Estimating Equations and Linear Mixed Modeling

Knafl, George J.

ISBN 10: 3031419871 ISBN 13: 9783031419874
Verlag: Springer, 2024
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783031419874_new

Diesen Artikel melden

Inhaltsangabe:

This book formulates methods for modeling continuous and categorical correlated outcomes that extend the commonly used methods: generalized estimating equations (GEE) and linear mixed modeling. Partially modified GEE adds estimating equations for variance/dispersion parameters to the standard GEE estimating equations for the mean parameters. Fully modified GEE provides alternate estimating equations for mean parameters as well as estimating equations for variance/dispersion parameters. The new estimating equations in these two cases are generated by maximizing a "likelihood" function related to the multivariate normal density function. Partially modified GEE and fully modified GEE use the standard GEE approach to estimate correlation parameters based on the residuals. Extended linear mixed modeling (ELMM) uses the likelihood function to estimate not only mean and variance/dispersion parameters, but also correlation parameters. Formulations are provided for gradient vectors and Hessian matrices, for a multi-step algorithm for solving estimating equations, and model-based and robust empirical tests for assessing theory-based models.


Standard GEE, partially modified GEE, fully modified GEE, and ELMM are demonstrated and compared using a variety of regression analyses of different types of correlated outcomes. Example analyses of correlated outcomes include linear regression for continuous outcomes, Poisson regression for count/rate outcomes, logistic regression for dichotomous outcomes, exponential regression for positive-valued continuous outcome, multinomial regression for general polytomous outcomes, ordinal regression for ordinal polytomous outcomes, and discrete regression for discrete numeric outcomes. These analyses also address nonlinearity in predictors based on adaptive search through alternative fractional polynomial models controlled by likelihood cross-validation (LCV) scores. Larger LCV scores indicate better models but not necessarily distinctly better models. LCV ratio tests are used to identify distinctly better models.

A SAS macro has been developed for analyzing correlated outcomes using standard GEE, partially modified GEE, fully modified GEE, and ELMM within alternative regression contexts. This macro and code for conducting the analyses addressed in the book are available online via the book's Springer website. Detailed descriptions of how to use this macro and interpret its output are provided in the book.

Über die Autorin bzw. den Autor: George J. Knafl is Biostatistician and Professor Emeritus in the School of Nursing of the University of North Carolina at Chapel Hill where he taught statistics courses for doctoral nursing students, consulted with doctoral students and faculty on their research, and conducted his own research. He has over 45 years of experience in teaching, consulting, and research in statistics. He has continued to conduct research involving development of methods for searching through alternative models for different types of statistical data and application of those methods to the analysis of a variety of health science data sets. He is also Professor Emeritus in the College of Computing and Digital Media at DePaul University and has served on the faculties of the Schools of Nursing at Yale University and at the Oregon Health and Science University.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Modeling Correlated Outcomes Using ...
Verlag: Springer
Erscheinungsdatum: 2024
Einband: Hardcover
Zustand: New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Knafl, George J.
Verlag: Springer, 2024
ISBN 10: 3031419871 ISBN 13: 9783031419874
Gebraucht Hardcover

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Very Good. Bestandsnummer des Verkäufers mon0003614921

Verkäufer kontaktieren

Gebraucht kaufen

EUR 87,28
EUR 4,26 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

George J. Knafl
ISBN 10: 3031419871 ISBN 13: 9783031419874
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Formulates and demonstrates novel extensions of standard methods for modeling correlated outcomesAddresses linear, Poisson, logistic, exponential, multinomial, ordinal, and discrete regressionCovers correlated sets of continuous, count/rate. Bestandsnummer des Verkäufers 945398531

Verkäufer kontaktieren

Neu kaufen

EUR 127,40
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

George J. Knafl
ISBN 10: 3031419871 ISBN 13: 9783031419874
Neu Hardcover
Print-on-Demand

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Modeling Correlated Outcomes Using Extensions of Generalized Estimating Equations and Linear Mixed Modeling | George J. Knafl | Buch | xxv | Englisch | 2024 | Springer Nature Switzerland | EAN 9783031419874 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 127335882

Verkäufer kontaktieren

Neu kaufen

EUR 132,20
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

George J. Knafl
ISBN 10: 3031419871 ISBN 13: 9783031419874
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book formulates methods for modeling continuous and categorical correlated outcomes that extend the commonly used methods: generalized estimating equations (GEE) and linear mixed modeling. Partially modified GEE adds estimating equations for variance/dispersion parameters to the standard GEE estimating equations for the mean parameters. Fully modified GEE provides alternate estimating equations for mean parameters as well as estimating equations for variance/dispersion parameters. The new estimating equations in these two cases are generated by maximizing a 'likelihood' function related to the multivariate normal density function. Partially modified GEE and fully modified GEE use the standard GEE approach to estimate correlation parameters based on the residuals. Extended linear mixed modeling (ELMM) uses the likelihood function to estimate not only mean and variance/dispersion parameters, but also correlation parameters. Formulations are provided for gradient vectors and Hessianmatrices, for a multi-step algorithm for solving estimating equations, and model-based and robust empirical tests for assessing theory-based models.Standard GEE, partially modified GEE, fully modified GEE, and ELMM are demonstrated and compared using a variety of regression analyses of different types of correlated outcomes. Example analyses of correlated outcomes include linear regression for continuous outcomes, Poisson regression for count/rate outcomes, logistic regression for dichotomous outcomes, exponential regression for positive-valued continuous outcome, multinomial regression for general polytomous outcomes, ordinal regression for ordinal polytomous outcomes, and discrete regression for discrete numeric outcomes. These analyses also address nonlinearity in predictors based on adaptive search through alternative fractional polynomial models controlled by likelihood cross-validation (LCV) scores. Larger LCV scores indicate better models but not necessarilydistinctly better models. LCV ratio tests are used to identify distinctly better models.A SAS macro has been developed for analyzing correlated outcomes using standard GEE, partially modified GEE, fully modified GEE, and ELMM within alternative regression contexts. This macro and code for conducting the analyses addressed in the book are available online via the book's Springer website. Detailed descriptions of how to use this macro and interpret its output are provided in the book. Bestandsnummer des Verkäufers 9783031419874

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
EUR 64,88 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

George J. Knafl
ISBN 10: 3031419871 ISBN 13: 9783031419874
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book formulates methods for modeling continuous and categorical correlated outcomes that extend the commonly used methods: generalized estimating equations (GEE) and linear mixed modeling. Partially modified GEE adds estimating equations for variance/dispersion parameters to the standard GEE estimating equations for the mean parameters. Fully modified GEE provides alternate estimating equations for mean parameters as well as estimating equations for variance/dispersion parameters. The new estimating equations in these two cases are generated by maximizing a 'likelihood' function related to the multivariate normal density function. Partially modified GEE and fully modified GEE use the standard GEE approach to estimate correlation parameters based on the residuals. Extended linear mixed modeling (ELMM) uses the likelihood function to estimate not only mean and variance/dispersion parameters, but also correlation parameters. Formulations are provided for gradient vectors and Hessianmatrices, for a multi-step algorithm for solving estimating equations, and model-based and robust empirical tests for assessing theory-based models.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 544 pp. Englisch. Bestandsnummer des Verkäufers 9783031419874

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

George J. Knafl
ISBN 10: 3031419871 ISBN 13: 9783031419874
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book formulates methods for modeling continuous and categorical correlated outcomes that extend the commonly used methods: generalized estimating equations (GEE) and linear mixed modeling. Partially modified GEE adds estimating equations for variance/dispersion parameters to the standard GEE estimating equations for the mean parameters. Fully modified GEE provides alternate estimating equations for mean parameters as well as estimating equations for variance/dispersion parameters. The new estimating equations in these two cases are generated by maximizing a 'likelihood' function related to the multivariate normal density function. Partially modified GEE and fully modified GEE use the standard GEE approach to estimate correlation parameters based on the residuals. Extended linear mixed modeling (ELMM) uses the likelihood function to estimate not only mean and variance/dispersion parameters, but also correlation parameters. Formulations are provided for gradient vectors and Hessianmatrices, for a multi-step algorithm for solving estimating equations, and model-based and robust empirical tests for assessing theory-based models.Standard GEE, partially modified GEE, fully modified GEE, and ELMM are demonstrated and compared using a variety of regression analyses of different types of correlated outcomes. Example analyses of correlated outcomes include linear regression for continuous outcomes, Poisson regression for count/rate outcomes, logistic regression for dichotomous outcomes, exponential regression for positive-valued continuous outcome, multinomial regression for general polytomous outcomes, ordinal regression for ordinal polytomous outcomes, and discrete regression for discrete numeric outcomes. These analyses also address nonlinearity in predictors based on adaptive search through alternative fractional polynomial models controlled by likelihood cross-validation (LCV) scores. Larger LCV scores indicate better models but not necessarilydistinctly better models. LCV ratio tests are used to identify distinctly better models.A SAS macro has been developed for analyzing correlated outcomes using standard GEE, partially modified GEE, fully modified GEE, and ELMM within alternative regression contexts. This macro and code for conducting the analyses addressed in the book are available online via the book's Springer website. Detailed descriptions of how to use this macro and interpret its output are provided in the book. 544 pp. Englisch. Bestandsnummer des Verkäufers 9783031419874

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
EUR 23,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J.
Verlag: Springer, 2024
ISBN 10: 3031419871 ISBN 13: 9783031419874
Gebraucht Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46750955

Verkäufer kontaktieren

Gebraucht kaufen

EUR 151,95
EUR 2,25 shipping
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J.
Verlag: Springer, 2024
ISBN 10: 3031419871 ISBN 13: 9783031419874
Gebraucht Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46750955

Verkäufer kontaktieren

Gebraucht kaufen

EUR 152,79
EUR 17,12 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J.
Verlag: Springer, 2024
ISBN 10: 3031419871 ISBN 13: 9783031419874
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 46750955-n

Verkäufer kontaktieren

Neu kaufen

EUR 160,89
EUR 17,12 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J.
Verlag: Springer, 2024
ISBN 10: 3031419871 ISBN 13: 9783031419874
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 46750955-n

Verkäufer kontaktieren

Neu kaufen

EUR 164,57
EUR 2,25 shipping
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 2 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen