Modern Computer Vision with PyTorch
V Kishore Ayyadevara
Verkauft von PBShop.store US, Wood Dale, IL, USA
AbeBooks-Verkäufer seit 7. April 2005
Neu - Softcover
Zustand: New
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenVerkauft von PBShop.store US, Wood Dale, IL, USA
AbeBooks-Verkäufer seit 7. April 2005
Zustand: New
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenNew Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Bestandsnummer des Verkäufers L0-9781803231334
The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models
Purchase of the print or Kindle book includes a free eBook in PDF format
Whether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks.
The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion.
You’ll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You’ll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you’ll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you’ll learn best practices for deploying a model to production.
By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.
This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.
(N.B. Please use the Read Sample option to see further chapters)
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Books are shipped from our US or UK warehouses. Delivery estimates allow for delivery from either location.