Neural Network Programming with TensorFlow
Manpreet Singh Ghotra, Rajdeep Dua
Verkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Neu - Softcover
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenVerkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenNeural Networks and their implementation decoded with TensorFlowAbout This Book. Develop a strong background in neural network programming from scratch, using the popular Tensorflow library. Use Tensorflow to implement different kinds of neural networks - from simple feedforward neural networks to multilayered perceptrons, CNNs, RNNs and more. A highly practical guide including real-world datasets and use-cases to simplify your understanding of neural networks and their implementation.Who This Book Is ForThis book is meant for developers with a statistical background who want to work with neural networks. Though we will be using TensorFlow as the underlying library for neural networks, book can be used as a generic resource to bridge the gap between the math and the implementation of deep learning. If you have some understanding of Tensorflow and Python and want to learn what happens at a level lower than the plain API syntax, this book is for you.What You Will Learn. Learn Linear Algebra and mathematics behind neural network. Dive deep into Neural networks from the basic to advanced concepts like CNN, RNN Deep Belief Networks, Deep Feedforward Networks. Explore Optimization techniques for solving problems like Local minima, Global minima, Saddle points. Learn through real world examples like Sentiment Analysis. Train different types of generative models and explore autoencoders. Explore TensorFlow as an example of deep learning implementation.In DetailIf you're aware of the buzz surrounding the terms such as "machine learning," "artificial intelligence," or "deep learning," you might know what neural networks are. Ever wondered how they help in solving complex computational problem efficiently, or how to train efficient neural networks? This book will teach you just that.You will start by getting a quick overview of the popular TensorFlow library and how it is used to train different neural networks. You will get a thorough understanding of the fundamentals and basic math for neural networks and why TensorFlow is a popular choice Then, you will proceed to implement a simple feed forward neural network. Next you will master optimization techniques and algorithms for neural networks using TensorFlow. Further, you will learn to implement some more complex types of neural networks such as convolutional neural networks, recurrent neural networks, and Deep Belief Networks. In the course of the book, you will be working on real-world datasets to get a hands-on understanding of neural network programming. You will also get to train generative models and will learn the applications of autoencoders.By the end of this book, you will have a fair understanding of how you can leverage the power of TensorFlow to train neural networks of varying complexities, without any hassle. While you are learning about various neural network implementations you will learn the underlying mathematics and linear algebra and how they map to the appropriate TensorFlow con.
Bestandsnummer des Verkäufers LU-9781788390392
Neural Networks and their implementation decoded with TensorFlow
Key Features:
Book Description:
If you're aware of the buzz surrounding the terms such as "machine learning," "artificial intelligence," or "deep learning," you might know what neural networks are. Ever wondered how they help in solving complex computational problem efficiently, or how to train efficient neural networks? This book will teach you just that.
You will start by getting a quick overview of the popular TensorFlow library and how it is used to train different neural networks. You will get a thorough understanding of the fundamentals and basic math for neural networks and why TensorFlow is a popular choice Then, you will proceed to implement a simple feed forward neural network. Next you will master optimization techniques and algorithms for neural networks using TensorFlow. Further, you will learn to implement some more complex types of neural networks such as convolutional neural networks, recurrent neural networks, and Deep Belief Networks. In the course of the book, you will be working on real-world datasets to get a hands-on understanding of neural network programming. You will also get to train generative models and will learn the applications of autoencoders.
By the end of this book, you will have a fair understanding of how you can leverage the power of TensorFlow to train neural networks of varying complexities, without any hassle. While you are learning about various neural network implementations you will learn the underlying mathematics and linear algebra and how they map to the appropriate TensorFlow constructs.
What You Will Learn:
Who this book is for:
This book is meant for developers with a statistical background who want to work with neural networks. Though we will be using TensorFlow as the underlying library for neural networks, book can be used as a generic resource to bridge the gap between the math and the implementation of deep learning. If you have some understanding of Tensorflow and Python and want to learn what happens at a level lower than the plain API syntax, this book is for you.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.