Neural Networks and Learning Machines
Haykin, Simon
Verkauft von BooksRun, Philadelphia, PA, USA
AbeBooks-Verkäufer seit 2. Februar 2016
Gebraucht - Hardcover
Zustand: Gebraucht - Ausreichend
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von BooksRun, Philadelphia, PA, USA
AbeBooks-Verkäufer seit 2. Februar 2016
Zustand: Gebraucht - Ausreichend
Anzahl: 1 verfügbar
In den Warenkorb legenThe item might be beaten up but readable. May contain markings or highlighting, as well as stains, bent corners, or any other major defect, but the text is not obscured in any way.
Bestandsnummer des Verkäufers 0131471392-7-1
For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science.
Neural Networks and Learning Machines, Third Edition is renowned for its thoroughness and readability. This well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. This is ideal for professional engineers and research scientists.
Matlab codes used for the computer experiments in the text are available for download at: http://www.pearsonhighered.com/haykin/
Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.
Neural Networks and Learning Machines
Third Edition
Simon Haykin
McMaster University, Canada
This third edition of a classic book presents a comprehensive treatment of neural networks and learning machines. These two pillars that are closely related. The book has been revised extensively to provide an up-to-date treatment of a subject that is continually growing in importance. Distinctive features of the book include:
• On-line learning algorithms rooted in stochastic gradient descent; small-scale and large-scale learning problems.
• Kernel methods, including support vector machines, and the representer theorem.
• Information-theoretic learning models, including copulas, independent components analysis (ICA), coherent ICA, and information bottleneck.
• Stochastic dynamic programming, including approximate and neurodynamic procedures.
• Sequential state-estimation algorithms, including Kalman and particle filters.
• Recurrent neural networks trained using sequential-state estimation algorithms.
• Insightful computer-oriented experiments.
Just as importantly, the book is written in a readable style that is Simon Haykin’s hallmark.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
30 days hassle-free returns guaranteed!
Bestellmenge | 3 bis 8 Werktage | 3 bis 6 Werktage |
---|---|---|
Erster Artikel | EUR 0.00 | EUR 3.41 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.