Inhaltsangabe
Feller Semigroups, Bernstein type Operators and Generalized Convexity Associated with Positive Projections.- Gregory's Rational Cubic Splines in Interpolation Subject to Derivative Obstacles.- Interpolation by Splines on Triangulations Oleg Davydov.- On the Use of Quasi-Newton Methods in DAE-Codes.- On the Regularity of Some Differential Operators.- Some Inequalities for Trigonometric Polynomials and their Derivatives.- Inf-Convolution and Radial Basis Functions.- On a Special Property of the Averaged Modulus for Functions of Bounded Variation.- A Simple Approach to the Variational Theory for Interpolation on Spheres.- Constants in Comonotone Polynomial Approximation - A Survey.- Will Ramanujan kill Baker-Gammel-Wills? (A Selective Survey of Padé Approximation).- Approximation Operators of Binomial Type.- Certain Results involving Gammaoperators.- Recent research at Cambridge on radial basis functions.- Representation of quasi-interpolants as differential operators and applications.- Native Hilbert Spaces for Radial Basis Functions I.- Adaptive Approximation with Walsh-similar Functions.- Dual Recurrence and Christoffel-Darboux-Type Formulas for Orthogonal Polynomials.- On Some Problems of Weighted Polynomial Approximation and Interpolation.- Asymptotics of derivatives of orthogonal polynomials based on generalized Jacobi weights. Some new theorems and applications.- List of participants.
Reseña del editor
This book contains refereed papers which were presented at the Second International Dortmund Meeting on Approximation Theory (IDoMAT ‘98) at Haus Bommerholz, the conference center of Dortmund University, during the week of February 23–27, 1998. At this conference 50 researchers and specialists from Bulgaria, China, France, Great Britain, Hungary, Israel, Italy, Romania, South Africa and Germany participated and described new developments in the fields of univariate and multivariate approximation theory. The papers cover topics such as radial basis functions, bivariate spline interpolation, subdivision algorithms, multilevel interpolation, multivariate triangular Bernstein bases, Padé approximation, comonotone polynomial approximation, weighted and unweighted polynomial approximation, adaptive approximation, approximation operators of binomial type, quasi-interpolants, generalized convexity and Peano kernel techniques.This research has applications in areas such as computer-aided geometric design, as applied in engineering and medical technology (e.g. computerized tomography).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.