Nonelliptic Partial Differential Equations
David S. Tartakoff
Verkauft von buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
AbeBooks-Verkäufer seit 23. Januar 2017
Neu - Softcover
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenVerkauft von buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
AbeBooks-Verkäufer seit 23. Januar 2017
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenNeuware -This book provides a very readable description of a technique, developed by the author years ago but as current as ever, for proving that solutions to certain (non-elliptic) partial differential equations only have real analytic solutions when the data are real analytic (locally). The technique is completely elementary but relies on a construction, a kind of a non-commutative power series, to localize the analysis of high powers of derivatives in the so-called bad direction. It is hoped that this work will permit a far greater audience of researchers to come to a deep understanding of this technique and its power and flexibility.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 212 pp. Englisch.
Bestandsnummer des Verkäufers 9781461429692
This book fills a real gap in the analytical literature. After many years and many results of analytic regularity for partial differential equations, the only access to the technique known as $(T^p)_\phi$ has remained embedded in the research papers themselves, making it difficult for a graduate student or a mature mathematician in another discipline to master the technique and use it to advantage. This monograph takes a particularly non-specialist approach, one might even say gentle, to smoothly bring the reader into the heart of the technique and its power, and ultimately to show many of the results it has been instrumental in proving. Another technique developed simultaneously by F. Treves is developed and compared and contrasted to ours.
The techniques developed here are tailored to proving real analytic regularity to solutions of sums of squares of vector fields with symplectic characteristic variety and others, real and complex. The motivation came from the field of several complex variables and the seminal work of J. J. Kohn. It has found application in non-degenerate (strictly pseudo-convex) and degenerate situations alike, linear and non-linear, partial and pseudo-differential equations, real and complex analysis. The technique is utterly elementary, involving powers of vector fields and carefully chosen localizing functions. No knowledge of advanced techniques, such as the FBI transform or the theory of hyperfunctions is required. In fact analyticity is proved using only $C^\infty$ techniques.
The book is intended for mathematicians from graduate students up, whether in analysis or not, who are curious which non-elliptic partial differential operators have the property that all solutions must be real analytic. Enough background is provided to prepare the reader with it for a clear understanding of the text, although this is not, and does not need to be, very extensive. In fact, it is very nearly true that if the reader is willing to accept the fact that pointwise bounds on the derivatives of a function are equivalent to bounds on the $L^2$ norms of its derivatives locally, the book should read easily.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden kann.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen vierzehn Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerru...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.