1 Introduction; 1.1 Motivation and objectives; 1.2 Outline of the main topics; 1.3 Further studies recommendations; 1.4 Summary of main notations; 2 Boundary value problem in linear and nonlinear elasticity; 2.1 Boundary value problem in elasticity with small displacement gradients; 2.1.1 Domain and boundary conditions; 2.1.2 Strong form of boundary value problem in 1D elasticity; 2.1.3 Weak form of boundary value problem in 1D elasticity and the principle of virtual work; 2.1.4 Variational formulation of boundary value problem in 1D elasticity and principle of minimum potential energy; 2.2 Finite element solution of boundary value problems in 1D linear and nonlinear elasticity; 2.2.1 Qualitative methods of functional analysis for solution existence and uniqueness; 2.2.2 Approximate solution construction by Galerkin, Ritz and finite element methods; 2.2.3 Approximation error and convergence of finite element method; 2.2.4 Solving a system of linear algebraic equations by Gauss elimination method; 2.2.5 Solving a system of nonlinear algebraic equations by incremental analysis; 2.2.6 Solving a system of nonlinear algebraic equations by Newton's iterative method; 2.3 Implementation of finite element method in ID boundary value problems; 2.3.1 Local or elementary description; 2.3.2 Consistence of finite element approximation; 2.3.3 Equivalent nodal external load vector; 2.3.4 Higher order finite elements; 2.3.5 Role of numerical integration; 2.3.6 Finite element assembly procedure; 2.4 Boundary value problems in 2D and 3D elasticity; 2.4.1 Tensor, index and matrix notations; 2.4.2 Strong form of a boundary value problem in 2D and 3D elasticity; 2.4.3 Weak form of boundary value problem in 2D and 3D elasticity; 2.5 Detailed aspects of the finite element method; 2.5.1 Isoparametric finite elements; 2.5.2 Order of numerical integration; 2.5.3 The patch test; 2.5.4 Hu-Washizu (mixed) variational principle and method of incompatible modes; 2.5.5 Hu-Washizu (mixed)variational principle and assumed strain method for quasi-incompressible behavior; 3 Inelastic behavior at small strains; 3.1 Boundary value problem in thermomechanics; 3.1.1 Rigid conductor and heat equation; 3.1.2 Numerical solution by time-integration scheme for heat transfer problem; 3.1.3 Thermo-mechanical coupling in elasticity; 3.1.4 Thermodynamics potentials in elasticity; 3.1.5 Thermodynamics of inelastic behavior: constitutive models with internal variables; 3.1.6 Internal variables in viscoelasticity; 3.1.7 Internal variables in viscoplasticity; 3.2 1D models of perfect plasticity and plasticity with hardening; 3.2.1 1D perfect plasticity; 3.2.2 1D plasticity with isotropic hardening; 3.2.3 Boundary value problem for 1D plasticity; 3.3 3D plasticity; 3.3.1 Standard format of 3D plasticity model: Prandtl-Reuss equations; 3.3.2 J2 plasticity model with von Mises plasticity criterion; 3.3.3 Implicit backward Euler scheme and operator split for von Mises plasticity; 3.3.4 Finite element numerical implementation in 3D plasticity; 3.4 Refined models of 3D plasticity; 3.4.1 Nonlinear isotropic hardening; 3.4.2 Kinematic hardening; 3.4.3 Plasticity model dependent on rate of deformation or viscoplasticity; 3.4.4 Multi-surface plasticity criterion; 3.4.5 Plasticity model with nonlinear elastic response; 3.5 Damage models; 3.5.1 1D damage model; 3.5.2 3D damage model; 3.5.3 Refinements of 3D damage model; 3.5.4 Isotropic damage model of Kachanov; 3.5.5 Numerical examples: damage model combining isotropic and multisurface criteria; 3.6 Coupled plasticity-damage model; 3.6.1 Theoretical formulation of 3D coupled model; 3.6.2 Time integration of stress for coupled plasticitydamagemodel; 3.6.3 Direct stress interpolation for coupled plasticitydamagemodel; 4 Large displacements and deformations; 4.1 Kinematics of large displacements; 4.1.1 Motion in large displacements; 4.1.2 Deformation gradient; 4.1.3 Large deformation measures; 4.2 Equilibrium equations
This volume provides insight into modelling and ultimate limit computation of complex structures, with their components represented by solid deformable bodies. The book examines practically all the important questions of current interests for nonlinear solid mechanics: plasticity, damage, large deformations, contact, dynamics, instability, localisation and failure, discrete models, multi-scale, multi-physics and parallel computing, with special attention given to finite element solution methods. The presentation of topics is structured around different aspects of typical boundary value problems in nonlinear solid mechanics, which provides the best pedagogical approach while keeping the book size reasonable despite its very broad contents. Other strong points are the exhaustive treatment of subjects, with each question studied from different angles of mechanics, mathematics and computation, as well as a successful merger of scientific cultures and heritage from Europe and the USA. The book content and style is also the product of rich international experience in teaching Master and Doctoral level courses, as well as the courses organized for participants from industry (IPSI courses) in France, and similar courses in Germany and Italy. Every effort was made to make the contents accessible to non-specialists and users of computer programs.
The original French edition published by Hermes Science - Lavoisier Paris in 2006 was nominated for the Roberval Award for University Textbooks in French.