Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation

Andrzej Cichocki

ISBN 10: 0470746661 ISBN 13: 9780470746660
Verlag: John Wiley & Sons Inc, 2009
Neu Hardcover

Verkäufer Kennys Bookstore, Olney, MD, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 9. Oktober 2009


Beschreibung

Beschreibung:

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF's various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). Num Pages: 500 pages, Illustrations. BIC Classification: TCB; TJ; UMZ. Category: (P) Professional & Vocational. Dimension: 251 x 176 x 30. Weight in Grams: 1208. . 2009. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9780470746660

Diesen Artikel melden

Inhaltsangabe:

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models.

Key features:

  • Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area.
  • Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.
  • Provides a comparative analysis of the different methods in order to identify approximation error and complexity.
  • Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book.

The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

Über die Autorin bzw. den Autor:

Andrzej Cichocki, Laboratory for Advanced Brain Signal Processing, Riken Brain Science Institute, Japan
Professor Cichocki is head of the Laboratory for Advanced Brain Signal Processing. He has co-authored more than one hundred technical papers, and is the author of three previous books of which two are published by Wiley. His most recent book is Adaptive Blind Signal and Image Processing with Professor Shun-ichi Amari (Wiley, 2002). He is Editor-in-Chief of International Journal Computational Intelligence and Neuroscience and Associate Editor of IEEE Transactions on Neural Networks.

Shun-ichi Amari, Laboratory for Mathematical Neuroscience, Riken Brain Science Institute, Japan
Professor Amari is head of the Laboratory for Mathematical Neuroscience, as well as vice-president of the Riken Brain Science Institute. He serves on editorial boards for numerous journals including Applied Intelligence, Journal of Mathematical Systems and Control and Annals of Institute of Statistical Mathematics. He is the co-author of three books, and more than three hundred technical papers.

Rafal Zdunek, Institute of Telecommunications, Teleinformatics and Acoustics, Wroclaw University of Technology, Poland

Associate Professor Zdunek is currently a lecturer at the Wroclaw University of Technology, Poland and up until recently was a visiting research scientist at the Riken Brain Science Institute. He is a member of the IEEE: Signal Processing Society, Communications Society and a member of the Society of Polish Electrical Engineers. Dr Zdunek has guest co-edited with Professor Cichocki amongst others, a special issue on Advances in Non-negative Matrix and Tensor Factorization in the journal, Computational Intelligence and Neuroscience (published May 08).

Anh Huy Phan, Laboratory for Advanced Brain Signal Processing, Riken Brain Science Institute, Japan
Anh Huy Phan is a researcher at the Laboratory for Advanced Brian Signal Processing at the Riken Brain Science Institute.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Nonnegative Matrix and Tensor Factorizations...
Verlag: John Wiley & Sons Inc
Erscheinungsdatum: 2009
Einband: Hardcover
Zustand: New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan
Verlag: John Wiley & Sons, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 500 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Bestandsnummer des Verkäufers 5783315/202

Verkäufer kontaktieren

Gebraucht kaufen

EUR 70,41
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy; Amari, Shun-Ichi
Verlag: Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 6009435-n

Verkäufer kontaktieren

Neu kaufen

EUR 124,17
EUR 17,14 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

A Cichocki
Verlag: Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9780470746660

Verkäufer kontaktieren

Neu kaufen

EUR 124,18
EUR 7,72 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 15 verfügbar

In den Warenkorb

Foto des Verkäufers

A Cichocki
Verlag: John Wiley & Sons, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositio. Bestandsnummer des Verkäufers 594698498

Verkäufer kontaktieren

Neu kaufen

EUR 132,69
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy; Amari, Shun-Ichi
Verlag: Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 6009435-n

Verkäufer kontaktieren

Neu kaufen

EUR 133,07
EUR 2,25 shipping
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy; Amari, Shun-Ichi
Verlag: Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Gebraucht Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 6009435

Verkäufer kontaktieren

Gebraucht kaufen

EUR 136,54
EUR 17,14 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy; Amari, Shun-Ichi
Verlag: Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Gebraucht Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 6009435

Verkäufer kontaktieren

Gebraucht kaufen

EUR 137,07
EUR 2,25 shipping
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrzej Cichocki
ISBN 10: 0470746661 ISBN 13: 9780470746660
Neu Hardcover Erstausgabe

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMFs various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors own recently developed techniques in the subject area.Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.Provides a comparative analysis of the different methods in order to identify approximation error and complexity.Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF's various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9780470746660

Verkäufer kontaktieren

Neu kaufen

EUR 141,80
EUR 42,28 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrzej Cichocki
ISBN 10: 0470746661 ISBN 13: 9780470746660
Neu Hardcover Erstausgabe

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMFs various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors own recently developed techniques in the subject area.Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.Provides a comparative analysis of the different methods in order to identify approximation error and complexity.Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF's various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9780470746660

Verkäufer kontaktieren

Neu kaufen

EUR 144,75
EUR 31,49 shipping
Versand von Australien nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrzej Cichocki
Verlag: John Wiley & Sons Inc, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Neu Hardcover

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. 1234. Bestandsnummer des Verkäufers B9780470746660

Verkäufer kontaktieren

Neu kaufen

EUR 148,25
EUR 26,38 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 11 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen