Verkäufer
Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 11. Juni 2025
Optimization problems involving sequential decisions in a stochastic environment were studied in Stochastic Programming (SP), Stochastic Optimal Control (SOC) and Markov Decision Processes (MDP). This monograph concentrates on SP and SOC modeling approaches. In these frameworks, there are natural situations when the considered problems are convex. The classical approach to sequential optimization is based on dynamic programming. It has the problem of the so-called "curse of dimensionality", in that its computational complexity increases exponentially with respect to the dimension of state variables.Recent progress in solving convex multistage stochastic problems is based on cutting plane approximations of the cost-to-go (value) functions of dynamic programming equations. Cutting plane type algorithms in dynamical settings is one of the main topics of this monograph. Also discussed in this work are stochastic approximation type methods applied to multistage stochastic optimization problems. From the computational complexity point of view, these two types of methods seem to be complimentary to each other. Cutting plane type methods can handle multistage problems with a large number of stages but a relatively smaller number of state (decision) variables. On the other hand, stochastic approximation type methods can only deal with a small number of stages but a large number of decision variables. Bestandsnummer des Verkäufers LU-9781638283508
Optimization problems involving sequential decisions in a stochastic environment were studied in Stochastic Programming (SP), Stochastic Optimal Control (SOC) and Markov Decision Processes (MDP). This monograph concentrates on SP and SOC modeling approaches. In these frameworks, there are natural situations when the considered problems are convex. The classical approach to sequential optimization is based on dynamic programming. It has the problem of the so-called "curse of dimensionality", in that its computational complexity increases exponentially with respect to the dimension of state variables.
Recent progress in solving convex multistage stochastic problems is based on cutting plane approximations of the cost-to-go (value) functions of dynamic programming equations. Cutting plane type algorithms in dynamical settings is one of the main topics of this monograph. Also discussed in this work are stochastic approximation type methods applied to multistage stochastic optimization problems. From the computational complexity point of view, these two types of methods seem to be complimentary to each other. Cutting plane type methods can handle multistage problems with a large number of stages but a relatively smaller number of state (decision) variables. On the other hand, stochastic approximation type methods can only deal with a small number of stages but a large number of decision variables.
Titel: Numerical Methods for Convex Multistage ...
Verlag: now publishers Inc, US
Erscheinungsdatum: 2024
Einband: Paperback
Zustand: New
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781638283508_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Optimization problems involving sequential decisions in a stochastic environment were studied in Stochastic Programming (SP), Stochastic Optimal Control (SOC) and Markov Decision Processes (MDP). This monograph concentrates on SP and SOC modeling approaches. In these frameworks, there are natural situations when the considered problems are convex. The classical approach to sequential optimization is based on dynamic programming. It has the problem of the so-called 'curse of dimensionality', in that its computational complexity increases exponentially with respect to the dimension of state variables.Recent progress in solving convex multistage stochastic problems is based on cutting plane approximations of the cost-to-go (value) functions of dynamic programming equations. Cutting plane type algorithms in dynamical settings is one of the main topics of this monograph. Also discussed in this work are stochastic approximation type methods applied to multistage stochastic optimization problems. From the computational complexity point of view, these two types of methods seem to be complimentary to each other. Cutting plane type methods can handle multistage problems with a large number of stages but a relatively smaller number of state (decision) variables. On the other hand, stochastic approximation type methods can only deal with a small number of stages but a large number of decision variables. Bestandsnummer des Verkäufers 9781638283508
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26401138079
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 396320320
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18401138069
Anzahl: 4 verfügbar