"The focus of this book is finite-dimensional constrained optimization problems which arise by discretizing shape optimization problems of [a particular] type.... In the major part of the book the authors recall the basic principles of constrained optimization, describe variants of Newton's algorithm to solve the necessary optimality conditions and discuss analytic and automatic techniques to calculate the derivative of j with respect to the design variable z." ―Mathematical Reviews
"Many illustrative examples and numerical results clarify the presentation. The book will be of interest to graduate students involved in mathematical modeling and simulation, as well as to engineers and researchers in applied mathematics looking for an up-to-date introduction to optimization techniques, sensitivity analysis, and optimal design." ―Zentralblatt Math