Verkäufer
Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 25. März 2015
In. Bestandsnummer des Verkäufers ria9786138945468_new
Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system.
Über die Autorin bzw. den Autor: Mohammed Salemdeeb received B.Sc., 2004 and M.Sc., 2011 in Elect. Eng.\Comm. Syst. from IUG, Palestine, and PhD in Electr. & Comm. Eng. from Kocaeli University, Turkey, 2020. His research interest fields are Signal & Image Processing, Deep Learning, ITS and Wireless Comm. He is R&D group leader at Autonom-Turkey and IEEE student branch counselor.
Titel: Object Detection and Recognition Using Deep ...
Verlag: Scholars' Press
Erscheinungsdatum: 2020
Einband: Softcover
Zustand: New
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Salemdeeb MohammedMohammed Salemdeeb received B.Sc., 2004 and M.Sc., 2011 in Elect. Eng.Comm. Syst. from IUG, Palestine, and PhD in Electr. & Comm. Eng. from Kocaeli University, Turkey, 2020. His research interest fields are Signal &. Bestandsnummer des Verkäufers 452471953
Anzahl: Mehr als 20 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Object Detection and Recognition Using Deep Learning | Multinational and Multilingual License Plate Recognition using Convolutional Neural Network | Mohammed Salemdeeb | Taschenbuch | Englisch | 2020 | Scholars' Press | EAN 9786138945468 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 119605839
Anzahl: 5 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9786138945468
Anzahl: 10 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9786138945468
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9786138945468
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 120 pp. Englisch. Bestandsnummer des Verkäufers 9786138945468
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system. 120 pp. Englisch. Bestandsnummer des Verkäufers 9786138945468
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system. Bestandsnummer des Verkäufers 9786138945468
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9786138945468
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26395128349
Anzahl: 4 verfügbar