Optimizing Retrieval: From Tokenization To Vector Quantization

Lucas Jr, Oliver

ISBN 13: 9798306867977
Verlag: Independently published, 2025
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015

Dieses Exemplar ist nicht mehr verfügbar. Hier sind die ähnlichsten Treffer für Optimizing Retrieval: From Tokenization To Vector Quantization von Lucas Jr, Oliver.

Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9798306867977_new

Diesen Artikel melden

Inhaltsangabe:

"Optimizing Retrieval: From Tokenization to Vector Quantization"

This book provides a deep dive into the core techniques that underpin modern information retrieval systems. It guides readers through the crucial steps, starting with the fundamental process of tokenization – breaking down text into meaningful units. From there, the book explores how these tokens are transformed into numerical representations, a critical step for efficient processing.

The core of the book lies in vector quantization, a powerful technique that compresses and represents high-dimensional data (like text) into lower-dimensional spaces while preserving essential information. This enables faster search, reduced storage requirements, and improved retrieval accuracy.1

Key Topics Covered:

  • Tokenization Strategies: Exploring various approaches, including word-level, subword-level (like byte-pair encoding), and character-level tokenization.
  • Text Embedding Techniques: Delving into methods like Word2Vec, GloVe, and more recently, Transformer-based models like BERT, which capture semantic relationships between words.2
  • Vector Quantization Algorithms: Examining different approaches, such as k-means, product quantization, and hierarchical vector quantization, and their applications in information retrieval.
  • Retrieval Models: Exploring how vector quantization is integrated into various retrieval models, including nearest neighbor search, approximate nearest neighbor search, and retrieval augmented generation.
  • Practical Applications: Discussing real-world applications of these techniques, such as search engines, recommendation systems, and question answering systems.

"Optimizing Retrieval: From Tokenization to Vector Quantization" is a valuable resource for researchers, practitioners, and students interested in the cutting-edge techniques driving advancements in information retrieval. It provides a comprehensive understanding of the key concepts and their practical implications, empowering readers to build and optimize high-performance retrieval systems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Optimizing Retrieval: From Tokenization To ...
Verlag: Independently published
Erscheinungsdatum: 2025
Einband: Softcover
Zustand: New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Lucas Jr, Oliver
Verlag: Independently published, 2025
ISBN 13: 9798306867977
Neu Softcover
Print-on-Demand

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers I-9798306867977

Verkäufer kontaktieren

Neu kaufen

EUR 17,54
Versand gratis
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb