Inhaltsangabe
Functional genomics is a young discipline whose origin can be traced back to the late 1980s and early 1990s, when molecular tools became available to determine the cellular functions of genes. Today, functional genomics is p- ceived as the analysis, often large-scale, that bridges the structure and organi- tion of genomes and the assessment of gene function. The completion in 2000 of the genome sequence of Arabidopsis thaliana has created a number of new and exciting challenges in plant functional genomics. The immediate task for the plant biology community is to establish the functions of the approximately 25,000 genes present in this model plant. One major issue that will remain even after this formidable task is c- pleted is establishing to what degree our understanding of the genome of one model organism, such as the dicot Arabidopsis, provides insight into the or- nization and function of genes in other plants. The genome sequence of rice, completed in 2002 as a result of the synergistic interaction of the private and public sectors, promises to significantly enrich our knowledge of the general organization of plant genomes. However, the tools available to investigate gene function in rice are lagging behind those offered by other model plant systems. Approaches available to investigate gene function become even more limited for plants other than the model systems of Arabidopsis, rice, and maize.
Von der hinteren Coverseite
As more and more plant genomes are sequenced, plant researchers have been inundated with an avalanche of novel methodologies to identify the function of tens of thousands of plant genes. In Plant Functional Genomics, Erich Grotewold has assembled a team of leading plant scientists to describe in detail the most commonly used methods for investigating plant gene function in a wide variety of plants, during plant pathogen interactions, and even in algae. These readily reproducible protocols include computational, molecular, and genetic methodologies designed for both general and specific problems. Here the reader will learn how to identify genes in complex systems that have large genomes, few cells, and mixed cell systems. Readers will also learn the use of powerful computational and statistical tools to help predict gene function, either on the basis of comparative genomics, or from the analysis of complex genome sequences. Because establishing gene function relies on the identification of phenotypes, the authors expand the concept of phenotypes, including the use of multiple outputs as the ultimate phenotypic result of changes in gene activity. Numerous loss-of-function and gain-of-function techniques for discovering gene function are presented in step-by-step detail.
Comprehensive and highly practical, Plant Functional Genomics offers plant biologists readily reproducible computational, molecular, and genetic protocols, powerful tools that will enable them, with little or no experience, successfully to investigate any gene function with the most recent methodologies.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.