Principles of Parallel Scientific Computing
Tobias Weinzierl
Verkauft von Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
AbeBooks-Verkäufer seit 11. Juni 2025
Neu - Softcover
Zustand: Neu
Anzahl: 3 verfügbar
In den Warenkorb legenVerkauft von Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
AbeBooks-Verkäufer seit 11. Juni 2025
Zustand: Neu
Anzahl: 3 verfügbar
In den Warenkorb legenNew insight in many scientific and engineering fields is unthinkable without the use of numerical simulations running efficiently on modern computers. The faster we get new results, the bigger and accurate are the problems that we can solve. It is the combination of mathematical ideas plus efficient programming that drives the progress in many disciplines. Future champions in the area thus will have to be qualified in their application domain, they will need a profound understanding of some mathematical ideas, and they need the skills to deliver fast code.The present textbook targets students which have programming skills already and do not shy away from mathematics, though they might be educated in computer science or an application domain. It introduces the basic concepts and ideas behind applied mathematics and parallel programming that we need to write numerical simulations for today's multicore workstations. Our intention is not to dive into one particular applicationdomain or to introduce a new programming language - we lay the generic foundations for future courses and projects in the area.The text is written in an accessible style which is easy to digest for students without years and years of mathematics education. It values clarity and intuition over formalism, and uses a simple N-body simulation setup to illustrate basic ideas that are of relevance in various different subdomains of scientific computing. Its primary goal is to make theoretical and paradigmatic ideas accessible to undergraduate students and to bring the fascination of the field across.
Bestandsnummer des Verkäufers LU-9783030761936
New insight in many scientific and engineering fields is unthinkable without the use of numerical simulations running efficiently on modern computers. The faster we get new results, the bigger and accurate are the problems that we can solve. It is the combination of mathematical ideas plus efficient programming that drives the progress in many disciplines. Future champions in the area thus will have to be qualified in their application domain, they will need a profound understanding of some mathematical ideas, and they need the skills to deliver fast code.
The present textbook targets students which have programming skills already and do not shy away from mathematics, though they might be educated in computer science or an application domain. It introduces the basic concepts and ideas behind applied mathematics and parallel programming that we need to write numerical simulations for today’s multicore workstations. Our intention is not to dive into one particular applicationdomain or to introduce a new programming language – we lay the generic foundations for future courses and projects in the area.
The text is written in an accessible style which is easy to digest for students without years and years of mathematics education. It values clarity and intuition over formalism, and uses a simple N-body simulation setup to illustrate basic ideas that are of relevance in various different subdomains of scientific computing. Its primary goal is to make theoretical and paradigmatic ideas accessible to undergraduate students and to bring the fascination of the field across.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Russia
Belarus
Ukraine
Israel
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.