Verkäufer
BooksRun, Philadelphia, PA, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 2. Februar 2016
Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 1617296074-11-1
Probabilistic Deep Learning shows how probabilistic deep learning models gives readers the tools to identify and account for uncertainty and potential errors in their results.
Starting by applying the underlying maximum likelihood principle of curve fitting to deep learning, readers will move on to using the Python-based Tensorflow Probability framework, and set up Bayesian neural networks that can state their uncertainties.
Key Features
· The maximum likelihood principle that underlies deep learning applications
· Probabilistic DL models that can indicate the range of possible outcomes
· Bayesian deep learning that allows for the uncertainty occurring in real-world situations
· Applying probabilistic principles to variational auto-encoders
Aimed at a reader experienced with developing machine learning or deep learning applications.
About the technology
Probabilistic deep learning models are better suited to dealing with the noise and uncertainty of real world data ―a crucial factor for self-driving cars, scientific results, financial industries, and other accuracy-critical applications.
Oliver Dürr is professor for data science at the University of Applied Sciences in Konstanz, Germany.
Beate Sick holds a chair for applied statistics at ZHAW, and works as a researcher and lecturer at the University of Zurich, and as a lecturer at ETH Zurich.
Elvis Murina is a research assistant, responsible for the extensive exercises that accompany this book.
Dürr and Sick are both experts in machine learning and statistics. They have supervised numerous bachelors, masters, and PhD the seson the topic of deep learning, and planned and conducted several postgraduate and masters-level deep learning courses. All three authors have been working with deep learning methods since 2013 and have extensive experience in both teaching the topic and developing probabilistic deep learning models.
Über die Autorin bzw. den Autor:
Oliver Dürr is professor for data science at the University of Applied Sciences in Konstanz, Germany.
Beate Sick holds a chair for applied statistics at ZHAW, and works as a researcher and lecturer at the University of Zurich, and as a lecturer at ETH Zurich.
Elvis Murina is a research assistant, responsible for the extensive exercises that accompany this book.
Dürr and Sick are both experts in machine learning and statistics. They have supervised numerous bachelors, masters, and PhD the seson the topic of deep learning, and planned and conducted several postgraduate and masters-level deep learning courses. All three authors have been working with deep learning methods since 2013 and have extensive experience in both teaching the topic and developing probabilistic deep learning models.
Titel: Probabilistic Deep Learning: With Python, ...
Verlag: Manning (edition 1)
Erscheinungsdatum: 2020
Einband: Paperback
Zustand: Good
Auflage: 1.
Anbieter: INDOO, Avenel, NJ, USA
Zustand: As New. Unread copy in mint condition. Bestandsnummer des Verkäufers SS9781617296079
Anzahl: Mehr als 20 verfügbar
Anbieter: INDOO, Avenel, NJ, USA
Zustand: New. Brand New. Bestandsnummer des Verkäufers 9781617296079
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 392252416
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26387380191
Anzahl: 2 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18387380181
Anzahl: 4 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. Probabilistic Deep Learning shows how probabilistic deep learning models gives readers the tools to identify and account for uncertainty and potential errors in their results. Starting by applying the underlying maximum likelihood principle of curve fitting to deep learning, readers will move on to using the Python-based Tensorflow Probability framework, and set up Bayesian neural networks that can state their uncertainties. Key Features The maximum likelihood principle that underlies deep learning applications Probabilistic DL models that can indicate the range of possible outcomes Bayesian deep learning that allows for the uncertainty occurring in real-world situations Applying probabilistic principles to variational auto-encoders Aimed at a reader experienced with developing machine learning or deep learning applications. About the technology Probabilistic deep learning models are better suited to dealing with the noise and uncertainty of real world data a crucial factor for self-driving cars, scientific results, financial industries, and other accuracy-critical applications. Oliver Duerr is professor for data science at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW, and works as a researcher and lecturer at the University of Zurich, and as a lecturer at ETH Zurich. Elvis Murina is a research assistant, responsible for the extensive exercises that accompany this book. Duerr and Sick are both experts in machine learning and statistics. They have supervised numerous bachelors, masters, and PhD the seson the topic of deep learning, and planned and conducted several postgraduate and masters-level deep learning courses. All three authors have been working with deep learning methods since 2013 and have extensive experience in both teaching the topic and developing probabilistic deep learning models. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781617296079
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-275443
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-12487
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-29204
Anbieter: SMASS Sellers, IRVING, TX, USA
Zustand: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Bestandsnummer des Verkäufers ASNT3-29204