Probability and Statistics for Data Science (Paperback)
Norman Matloff
Verkauft von AussieBookSeller, Truganina, VIC, Australien
AbeBooks-Verkäufer seit 22. Juni 2007
Neu - Softcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von AussieBookSeller, Truganina, VIC, Australien
AbeBooks-Verkäufer seit 22. Juni 2007
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenPaperback. Probability and Statistics for Data Science: Math + R + Data covers "math stat"distributions, expected value, estimation etc.but takes the phrase "Data Science" in the title quite seriously:* Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks.* Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture."* Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner.Prerequisites are calculus, some matrix algebra, and some experience in programming.Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award. This text is designed for a one-semester junior/senior/graduate-level calculus-based course on probability and statistics, aimed specifically at data science students (including computer science). In addition to calculus, the text assumes basic knowledge of matrix algebra and rudimentary computer programming. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Bestandsnummer des Verkäufers 9781138393295
Probability and Statistics for Data Science: Math + R + Data covers "math stat"―distributions, expected value, estimation etc.―but takes the phrase "Data Science" in the title quite seriously:
* Real datasets are used extensively.
* All data analysis is supported by R coding.
* Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks.
* Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture."
* Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner.
Prerequisites are calculus, some matrix algebra, and some experience in programming.
Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.
Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
We guarantee the condition of every book as it's described on the Abebooks web sites. If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.
Please note that titles are dispatched from our UK and NZ warehouse. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 8-15 days.