Procedural Content Generation via Machine Learning (Paperback)

Matthew Guzdial

ISBN 10: 303116721X ISBN 13: 9783031167218
Verlag: Springer International Publishing AG, Cham, 2023
Neu Paperback

Verkäufer CitiRetail, Stevenage, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 29. Juni 2022


Beschreibung

Beschreibung:

Paperback. This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project. This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9783031167218

Diesen Artikel melden

Inhaltsangabe:

This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML).  Machine learning is having a major impact on many industries, including the video game industry.  PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content.  The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML.  This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry.  The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis.  This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project.




Über die Autorin bzw. den Autor: Matthew Guzdial, Ph.D, is an Assistant Professor in the Computing Science Department at the University of Alberta and a Canada CIFAR AI Chair at the Alberta Machine Intelligence Institute (Amii). His research focuses on the intersection of machine learning, creativity, and human-centered computing. He is a recipient of an Early Career Researcher Award from NSERC, a Unity Graduate Fellowship, and two best conference paper awards from the International Conference on Computational Creativity. His work has been featured in the BBC, WIRED, Popular Science, and Time.


Sam Snodgrass is an AI researcher at modl.ai, a game AI company focused on bringing state of the art game AI research from academia to the games industry. His research focuses on making PCGML more accessible to non-ML experts. This work includes making PCGML systems more adaptable and self-reliant, reducing the authorial burden of creating training data through domain blending, and building tools that allow for easier interactions with the underlying PCGML systems and their outputs. Through his work at modl.ai he has deployed several mixed-initiative PCGML tools into game studios to assist with level design and creation.

Adam Summerville is the lead AI engineer for Procedural Content Generation at The Molasses Flood, a CD Projekt studio. Prior to this, he was an assistant professor at California State Polytechnic University, Pomona. His research focuses on the intersection of artificial intelligence in games with a high-level goal of enabling experiences that would not be possible without artificial intelligence. This research ranges from procedural generation of levels, social simulation for games, and the use of natural language processing for gameplay. His work has been shown at the SF MoMA and SlamDance and won the audience choice award at IndieCade.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Procedural Content Generation via Machine ...
Verlag: Springer International Publishing AG, Cham
Erscheinungsdatum: 2023
Einband: Paperback
Zustand: new

Beste Suchergebnisse bei AbeBooks

Foto des Verkäufers

Matthew Guzdial|Sam Snodgrass|Adam J. Summerville
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Kartoniert / Broschiert
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Addresses the growing academic interest in PCGML Demonstrates common pitfalls in PCGML projects and how to avoid themProvides resources and guidance for starting new PCGML projectsMatthew Guzdial, Ph.D, is an Assistant Professor in . Bestandsnummer des Verkäufers 1241470853

Verkäufer kontaktieren

Neu kaufen

EUR 55,78
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Matthew Guzdial (u. a.)
Verlag: Springer, 2023
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Procedural Content Generation via Machine Learning | An Overview | Matthew Guzdial (u. a.) | Taschenbuch | xiii | Englisch | 2023 | Springer | EAN 9783031167218 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Bestandsnummer des Verkäufers 128028868

Verkäufer kontaktieren

Neu kaufen

EUR 58,00
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Matthew Guzdial
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project. 238 pp. Englisch. Bestandsnummer des Verkäufers 9783031167218

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
EUR 23,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Matthew Guzdial
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project. Bestandsnummer des Verkäufers 9783031167218

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
EUR 62,15 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Matthew Guzdial
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 252 pp. Englisch. Bestandsnummer des Verkäufers 9783031167218

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew; Snodgrass, Sam; Summerville, Adam J.
Verlag: Springer, 2023
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26398710149

Verkäufer kontaktieren

Neu kaufen

EUR 84,24
EUR 3,40 shipping
Versand innerhalb von USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew; Snodgrass, Sam; Summerville, Adam J.
Verlag: Springer, 2023
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 397699674

Verkäufer kontaktieren

Neu kaufen

EUR 85,55
EUR 7,40 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew; Snodgrass, Sam; Summerville, Adam J.
Verlag: Springer, 2023
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18398710159

Verkäufer kontaktieren

Neu kaufen

EUR 87,97
EUR 9,95 shipping
Versand von Deutschland nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew/ Snodgrass, Sam/ Summerville, Adam J.
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 251 pages. 9.45x6.61x0.57 inches. In Stock. Bestandsnummer des Verkäufers x-303116721X

Verkäufer kontaktieren

Neu kaufen

EUR 90,70
EUR 11,39 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb