PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models

Mishra, Pradeepta

ISBN 10: 1484289242 ISBN 13: 9781484289242
Verlag: Apress, 2022
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9781484289242_new

Diesen Artikel melden

Inhaltsangabe:

Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code.

You'll start by learning how to use tensors to develop and fine-tune neural network models and implement deep learning models such as LSTMs, and RNNs. Next, you'll explore probability distribution concepts using PyTorch, as well as supervised and unsupervised algorithms with PyTorch. This is followed by a deep dive on building models with convolutional neural networks, deep neural networks, and recurrent neural networks using PyTorch. This new edition covers also topics such as Scorch, a compatible module equivalent to the Scikit machine learning library, model quantization to reduce parameter size, and preparing a model for deployment within a production system. Distributed parallel processing for balancing PyTorch workloads, using PyTorch for image processing, audio analysis, and model interpretation are also covered in detail. Each chapter includes recipe code snippets to perform specific activities.

By the end of this book, you will be able to confidently build neural network models using PyTorch.

What You Will Learn
  • Utilize new code snippets and models to train machine learning models using PyTorch
  • Train deep learning models with fewer and smarter implementations
  • Explore the PyTorch framework for model explainability and to bring transparency to model interpretation
  • Build, train, and deploy neural network models designed to scale with PyTorch
  • Understand best practices for evaluating and fine-tuning models using PyTorch
  • Use advanced torch features in training deep neural networks
  • Explore various neural network models using PyTorch
  • Discover functions compatible with sci-kit learn compatible models
  • Perform distributed PyTorch training and execution

Who This Book Is For
Machine learning engineers, data scientists and Python programmers and software developers interested in learning the PyTorch framework.

Über die Autorin bzw. den Autor:

Pradeepta Mishra is the Director of AI, Fosfor at L&T Infotech (LTI), leading a large group of Data Scientists, computational linguistics experts, Machine Learning and Deep Learning experts in building the next-generation product, ‘Leni,’ the world’s first virtual data scientist. He has expertise across core branches of Artificial Intelligence including Autonomous ML and Deep Learning pipelines, ML Ops, Image Processing, Audio Processing, Natural Language Processing (NLP), Natural Language Generation (NLG), design and implementation of expert systems, and personal digital assistants. In 2019 and 2020, he was named one of "India's Top "40Under40DataScientists" by Analytics India Magazine. Two of his books are translated into Chinese and Spanish based on popular demand. 

He delivered a keynote session at the Global Data Science conference 2018, USA. He has delivered a TEDx talk on "Can Machines Think?", available on the official TEDx YouTube channel. He has mentored more than 2000 data scientists globally. He has delivered 200+ tech talks on data science, ML, DL, NLP, and AI in various Universities, meetups, technical institutions, and community-arranged forums. He is a visiting faculty member to more than 10 universities, where he teaches deep learning and machine learning to professionals, and mentors them in pursuing a rewarding career in Artificial Intelligence.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: PyTorch Recipes: A Problem-Solution Approach...
Verlag: Apress
Erscheinungsdatum: 2022
Einband: Softcover
Zustand: New
Auflage: 2. Auflage

Beste Suchergebnisse bei AbeBooks

Internationale Ausgabe
Internationale Ausgabe

Pradeepta Mishra
Verlag: Apress, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Softcover
Internationale Ausgabe

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-209611

Verkäufer kontaktieren

Neu kaufen

EUR 31,40
Versand gratis
Versand innerhalb von USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Pradeepta Mishra
Verlag: APress, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Paperback / softback

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback / softback. Zustand: New. New copy - Usually dispatched within 2 working days. Bestandsnummer des Verkäufers B9781484289242

Verkäufer kontaktieren

Neu kaufen

EUR 31,53
EUR 14,62 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Mishra, Pradeepta
Verlag: 0, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Softcover

Anbieter: Lakeside Books, Benton Harbor, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Bestandsnummer des Verkäufers OTF-S-9781484289242

Verkäufer kontaktieren

Neu kaufen

EUR 35,75
EUR 3,40 shipping
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Mishra, Pradeepta
Verlag: Apress, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 45291127-n

Verkäufer kontaktieren

Neu kaufen

EUR 36,77
EUR 2,25 shipping
Versand innerhalb von USA

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Pradeepta Mishra
Verlag: APress, US, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Paperback

Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Second Edition. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code.You'll start by learning how to use tensors to develop and fine-tune neural network models and implement deep learning models such as LSTMs, and RNNs. Next, you'll explore probability distribution concepts using PyTorch, as well as supervised and unsupervised algorithms with PyTorch. This is followed by a deep dive on building models with convolutional neural networks, deep neural networks, and recurrent neural networks using PyTorch. This new edition covers also topics such as Scorch, a compatible module equivalent to the Scikit machine learning library, model quantization to reduce parameter size, and preparing a model for deployment within a production system. Distributed parallel processing for balancing PyTorch workloads, using PyTorch for image processing, audio analysis, and model interpretation are also covered in detail. Each chapter includes recipe code snippets to perform specific activities.By the end of this book, you will be able to confidently build neural network models using PyTorch.What You Will LearnUtilize new code snippets and models to train machine learning models using PyTorchTrain deep learning models with fewer and smarter implementationsExplore the PyTorch framework for model explainability and to bring transparency to model interpretationBuild, train, and deploy neural network models designed to scale with PyTorchUnderstand best practices for evaluating and fine-tuning models using PyTorchUse advanced torch features in training deep neural networksExplore various neural network models using PyTorchDiscover functions compatible with sci-kit learn compatible modelsPerform distributed PyTorch training and executionWho This Book Is ForMachine learning engineers, data scientists and Python programmers and software developers interested in learning the PyTorch framework. Bestandsnummer des Verkäufers LU-9781484289242

Verkäufer kontaktieren

Neu kaufen

EUR 38,86
EUR 74,03 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Mishra, Pradeepta
Verlag: Apress 12/8/2022, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Pytorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models. Book. Bestandsnummer des Verkäufers BBS-9781484289242

Verkäufer kontaktieren

Neu kaufen

EUR 39,10
Versand gratis
Versand innerhalb von USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Mishra, Pradeepta
Verlag: Apress, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45291127

Verkäufer kontaktieren

Gebraucht kaufen

EUR 41,42
EUR 2,25 shipping
Versand innerhalb von USA

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Pradeepta Mishra
Verlag: APress, US, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Paperback

Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Second Edition. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code.You'll start by learning how to use tensors to develop and fine-tune neural network models and implement deep learning models such as LSTMs, and RNNs. Next, you'll explore probability distribution concepts using PyTorch, as well as supervised and unsupervised algorithms with PyTorch. This is followed by a deep dive on building models with convolutional neural networks, deep neural networks, and recurrent neural networks using PyTorch. This new edition covers also topics such as Scorch, a compatible module equivalent to the Scikit machine learning library, model quantization to reduce parameter size, and preparing a model for deployment within a production system. Distributed parallel processing for balancing PyTorch workloads, using PyTorch for image processing, audio analysis, and model interpretation are also covered in detail. Each chapter includes recipe code snippets to perform specific activities.By the end of this book, you will be able to confidently build neural network models using PyTorch.What You Will LearnUtilize new code snippets and models to train machine learning models using PyTorchTrain deep learning models with fewer and smarter implementationsExplore the PyTorch framework for model explainability and to bring transparency to model interpretationBuild, train, and deploy neural network models designed to scale with PyTorchUnderstand best practices for evaluating and fine-tuning models using PyTorchUse advanced torch features in training deep neural networksExplore various neural network models using PyTorchDiscover functions compatible with sci-kit learn compatible modelsPerform distributed PyTorch training and executionWho This Book Is ForMachine learning engineers, data scientists and Python programmers and software developers interested in learning the PyTorch framework. Bestandsnummer des Verkäufers LU-9781484289242

Verkäufer kontaktieren

Neu kaufen

EUR 42,09
Versand gratis
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Mishra, Pradeepta
Verlag: Apress, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9781484289242

Verkäufer kontaktieren

Neu kaufen

EUR 43,86
Versand gratis
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Mishra, Pradeepta
Verlag: Apress, 2022
ISBN 10: 1484289242 ISBN 13: 9781484289242
Neu Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 45291127-n

Verkäufer kontaktieren

Neu kaufen

EUR 45,74
EUR 17,08 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 12 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen