Python for Geospatial Data Analysis
Bonny P. McClain
Verkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Neu - Softcover
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenVerkauft von Rarewaves USA, OSWEGO, IL, USA
AbeBooks-Verkäufer seit 10. Juni 2025
Zustand: Neu
Anzahl: Mehr als 20 verfügbar
In den Warenkorb legenIn spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions.Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python.This book helps you:Understand the importance of applying spatial relationships in data scienceSelect and apply data layering of both raster and vector graphicsApply location data to leverage spatial analyticsDesign informative and accurate mapsAutomate geographic data with Python scriptsExplore Python packages for additional functionalityWork with atypical data types such as polygons, shape files, and projectionsUnderstand the graphical syntax of spatial data science to stimulate curiosity.
Bestandsnummer des Verkäufers LU-9781098104795
In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions.
Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python.
This book helps you:
Bonny applies advanced data analytics including data engineering and geoenrichment to discussions of poverty, race, and gender. Her research targets judgementsabout social determinants, racial equity, and elements of intersectionality to illuminate the confluence of metrics contributing to poverty. Moving beyond zipcodes to explore apportioned socioeconomic data based on underlying population data leads to discovering novel variables based on location to build more context to complex data questions.
In order to influence change or pathways to mitigate factors contributing to "poverty" we need to evaluate the measures that influence the social context. Core themes of racism, class exploitation, sexism and nationalism and heterosexism all contribute to social inequality. Professionally and personally she redefines how we measure these attributes and how we can more accurately identify factors amenable to intervention. Spatial data hosts a variety of physical and cultural features to reveal distribution patterns helping analysts and data professionals understand underlying causes of these patterns. The ability to query these relationships can inform policy and identify solutions.
Bonny is a Tableau User Group Leader, Tableau Speaker's Bureau member and Data Analytics Professional. Her professional goals include working to improve data literacy through education, Tableau skill integration, as well as R, Python, and Tableau Prep tools, exploring large datasets and curating empathetic answers to larger questions--making a big world seem smaller.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.
Bestellmenge | 15 bis 27 Werktage | 15 bis 27 Werktage |
---|---|---|
Erster Artikel | EUR 3.41 | EUR 3.41 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.