Verkäufer
Grand Eagle Retail, Bensenville, IL, USA
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 12. Oktober 2005
Paperback. Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9789348642516
Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.
The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning.
Titel: Regression Analysis with Classical and ...
Verlag: Academic Enclave
Erscheinungsdatum: 2025
Einband: Paperback
Zustand: new
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 409002605
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18404184504
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26404184498
Anzahl: 4 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49980878
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 49980878-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9789348642516
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 49980878-n
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9789348642516
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49980878
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Paperback. Zustand: new. Paperback. Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9789348642516
Anzahl: 1 verfügbar