Scalable and Distributed Machine Learning and Deep Learning Patterns (Advances in Computational Intelligence and Robotics)

ISBN 10: 1668498049 ISBN 13: 9781668498040
Verlag: IGI Global, 2023
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9781668498040_new

Diesen Artikel melden

Inhaltsangabe:

Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work. This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you’re a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs.

Über die Autorin bzw. den Autor: J. Joshua Thomas is a senior lecturer at KDU Penang University College, Malaysia since 2008. He obtained his PhD (Intelligent Systems Techniques) in 2015 from University Sains Malaysia, Penang, and Master's degree in 1999 from Madurai Kamaraj University, India. From July to September 2005, he worked as a research assistant at the Artificial Intelligence Lab in University Sains Malaysia. From March 2008 to March 2010, he worked as a research associate at the same University. Currently, he is working with Machine Learning, Big Data, Data Analytics, Deep Learning, specially targeting on Convolutional Neural Networks (CNN) and Bi-directional Recurrent Neural Networks (RNN) for image tagging with embedded natural language processing, End to end steering learning systems and GAN. His work involves experimental research with software prototypes and mathematical modelling and design He is an editorial board member for the Journal of Energy Optimization and Engineering (IJEOE), and invited guest editor for Journal of Visual Languages Communication (JVLC-Elsevier). He has published more than 30 papers in leading international conference proceedings and peer reviewed journals.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Scalable and Distributed Machine Learning ...
Verlag: IGI Global
Erscheinungsdatum: 2023
Einband: Hardcover
Zustand: New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Verlag: IGI Global, 2023
ISBN 10: 1668498049 ISBN 13: 9781668498040
Neu Hardcover
Print-on-Demand

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781668498040

Verkäufer kontaktieren

Neu kaufen

EUR 269,08
EUR 6,69 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: IGI Global, 2023
ISBN 10: 1668498049 ISBN 13: 9781668498040
Neu Hardcover
Print-on-Demand

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781668498040

Verkäufer kontaktieren

Neu kaufen

EUR 276,47
Versand gratis
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

J. Joshua Thomas (u. a.)
Verlag: IGI Global, 2023
ISBN 10: 1668498049 ISBN 13: 9781668498040
Neu Hardcover
Print-on-Demand

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Scalable and Distributed Machine Learning and Deep Learning Patterns | J. Joshua Thomas (u. a.) | Buch | Englisch | 2023 | IGI Global | EAN 9781668498040 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 127564542

Verkäufer kontaktieren

Neu kaufen

EUR 291,90
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

J. Joshua Thomas
Verlag: IGI Global, 2023
ISBN 10: 1668498049 ISBN 13: 9781668498040
Neu Hardcover
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work. This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you're a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs. Bestandsnummer des Verkäufers 9781668498040

Verkäufer kontaktieren

Neu kaufen

EUR 348,83
EUR 64,04 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb