Shared-memory Parallelism Can Be Simple, Fast, and Scalable (Acm Books)
Shun, Julian
Verkauft von Best Price, Torrance, CA, USA
AbeBooks-Verkäufer seit 30. August 2024
Neu - Hardcover
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von Best Price, Torrance, CA, USA
AbeBooks-Verkäufer seit 30. August 2024
Zustand: Neu
Anzahl: 1 verfügbar
In den Warenkorb legenSUPER FAST SHIPPING.
Bestandsnummer des Verkäufers 9781970001914
Parallelism is the key to achieving high performance in computing. However, writing efficient and scalable parallel programs is notoriously difficult, and often requires significant expertise. To address this challenge, it is crucial to provide programmers with high-level tools to enable them to develop solutions easily, and at the same time emphasize the theoretical and practical aspects of algorithm design to allow the solutions developed to run efficiently under many different settings. This thesis addresses this challenge using a three-pronged approach consisting of the design of shared-memory programming techniques, frameworks, and algorithms for important problems in computing. The thesis provides evidence that with appropriate programming techniques, frameworks, and algorithms, shared-memory programs can be simple, fast, and scalable, both in theory and in practice. The results developed in this thesis serve to ease the transition into the multicore era.
The first part of this thesis introduces tools and techniques for deterministic parallel programming, including means for encapsulating nondeterminism via powerful commutative building blocks, as well as a novel framework for executing sequential iterative loops in parallel, which lead to deterministic parallel algorithms that are efficient both in theory and in practice. The second part of this thesis introduces Ligra, the first high-level shared memory framework for parallel graph traversal algorithms. The framework allows programmers to express graph traversal algorithms using very short and concise code, delivers performance competitive with that of highly-optimized code, and is up to orders of magnitude faster than existing systems designed for distributed memory. This part of the thesis also introduces Ligra+, which extends Ligra with graph compression techniques to reduce space usage and improve parallel performance at the same time, and is also the first graph processing system to support in-memory graph compression.
The third and fourth parts of this thesis bridge the gap between theory and practice in parallel algorithm design by introducing the first algorithms for a variety of important problems on graphs and strings that are efficient both in theory and in practice. For example, the thesis develops the first linear-work and polylogarithmic-depth algorithms for suffix tree construction and graph connectivity that are also practical, as well as a work-efficient, polylogarithmic-depth, and cache-efficient shared-memory algorithm for triangle computations that achieves a 2-5x speedup over the best existing algorithms on 40 cores.
This is a revised version of the thesis that won the 2015 ACM Doctoral Dissertation Award.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
When you see an item on our listing, it means we have it available in one of our warehouses right here right now, ready for same day or next day processing of your order. Over 50+ Million books in stock & ready to ship same day. Customer Service is a top priority for us, we want every customer to be 100% satisfied. We offer the world's largest selection of books, music and video. Maintaining an accurate inventory of more than 50+ Million items, we are able to ship your order the same day it is r...
SUPER FAST SHIPPING!
Bestellmenge | 1 bis 3 Werktage | 1 bis 3 Werktage |
---|---|---|
Erster Artikel | EUR 7.67 | EUR 17.07 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.