Similarity-Based Pattern Analysis and Recognition
Verkauft von Majestic Books, Hounslow, Vereinigtes Königreich
AbeBooks-Verkäufer seit 19. Januar 2007
Neu - Hardcover
Zustand: New
Anzahl: 4 verfügbar
In den Warenkorb legenVerkauft von Majestic Books, Hounslow, Vereinigtes Königreich
AbeBooks-Verkäufer seit 19. Januar 2007
Zustand: New
Anzahl: 4 verfügbar
In den Warenkorb legenPrint on Demand pp. 308 65 Illus. (46 Col.).
Bestandsnummer des Verkäufers 94893298
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a "kernel tailoring" approach and a strategy for learning similarities directly from training data; describes various methods for "structure-preserving" embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imaging applications.
The pattern recognition and machine learning communities have, until recently, focused mainly on feature-vector representations, typically considering objects in isolation. However, this paradigm is being increasingly challenged by similarity-based approaches, which recognize the importance of relational and similarity information.
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models.
Topics and features:
This pioneering work is essential reading for graduate students and researchers seeking an introduction to this important and diverse subject.
Marcello Pelillo is a Full Professor of Computer Science at the University of Venice, Italy. He is a Fellow of the IEEE and of the IAPR.„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Returns accepted if you are not satisfied with the Service or Book.
Best packaging and fast delivery