Sparse Polynomial Optimization : Theory and Practice

Magron, Victor; Wang, Jie

ISBN 10: 180061294X ISBN 13: 9781800612945
Verlag: WSPC (EUROPE), 2023
Gebraucht Hardcover

Verkäufer GreatBookPricesUK, Woodford Green, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 28. Januar 2020


Beschreibung

Beschreibung:

Unread book in perfect condition. Bestandsnummer des Verkäufers 45985998

Diesen Artikel melden

Inhaltsangabe:

Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is "no free lunch" and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem. This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries. This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data.

Über die Autorin bzw. den Autor:

Victor Magron is a full-time researcher at CNRS-LAAS, France, working in the MAC team. He completed his PhD in computer science in 2013 at Ecole Polytechnique, INRIA-Saclay, and defended his habilitation thesis in 2021. In 2014, he was a postdoc in the MAC team. In 2014–2015, he was a research associate in the Circuits and Systems group at Imperial College. From 2015 to 2018, he was a CNRS junior researcher affiliated to the Tempo team at Verimag in Grenoble. In 2018, he visited the joint INRIA-CNRS-Sorbonne Université PolSys team at LIP6 in Paris Jussieu. His research is devoted to applications of certified polynomial optimization to deep learning, quantum and power systems. He has published 50 peer-reviewed articles.

Jie Wang is an associate research fellow at Academy of Mathematics and Systems Science, Chinese Academy of Sciences (CAS), China. He completed his PhD in mathematics in 2017 at Academy of Mathematics and Systems Science, CAS. In 2017–2019, he was a postdoc at Peking University. In 2019–2021, he was a postdoctoral researcher at CNRS-LAAS. He works in the areas of polynomial optimization, semidefinite programming, real algebraic geometry, symbolic computation and their applications in control, quantum information, computer vision and so on. He has published 20 peer-reviewed articles.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Sparse Polynomial Optimization : Theory and ...
Verlag: WSPC (EUROPE)
Erscheinungsdatum: 2023
Einband: Hardcover
Zustand: As New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Magron, Victor; Wang, Jie
Verlag: WSPC (EUROPE), 2023
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9781800612945

Verkäufer kontaktieren

Neu kaufen

EUR 93,11
Versand gratis
Versand innerhalb von USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Victor Magron
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. Bestandsnummer des Verkäufers B9781800612945

Verkäufer kontaktieren

Neu kaufen

EUR 100,09
EUR 18,28 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 19 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Victor Magron
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover
Print-on-Demand

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781800612945

Verkäufer kontaktieren

Neu kaufen

EUR 103,94
EUR 17,98 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Victor Magron, Jie Wang
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover

Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: New. Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data. Bestandsnummer des Verkäufers LU-9781800612945

Verkäufer kontaktieren

Neu kaufen

EUR 109,35
EUR 74,20 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Magron, Victor|Wang, Jie
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. KlappentextMany applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimizati. Bestandsnummer des Verkäufers 594275088

Verkäufer kontaktieren

Neu kaufen

EUR 113,51
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Victor Magron, Jie Wang
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover

Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: New. Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data. Bestandsnummer des Verkäufers LU-9781800612945

Verkäufer kontaktieren

Neu kaufen

EUR 115,57
Versand gratis
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Magron Victor
Verlag: WSPC (Europe), 2023
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover
Print-on-Demand

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. SPARSE POLYNOMIAL OPTIMIZATION | THEORY AND PRACTICE | Magron Victor | Buch | Gebunden | Englisch | 2023 | WSPC (Europe) | EAN 9781800612945 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 121668140

Verkäufer kontaktieren

Neu kaufen

EUR 117,80
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Magron, Victor/ Wang, Jie
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 200 pages. 9.00x6.00x0.56 inches. In Stock. Bestandsnummer des Verkäufers x-180061294X

Verkäufer kontaktieren

Neu kaufen

EUR 122,16
EUR 11,41 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Magron Victor
Verlag: WSPC (Europe), 2023
ISBN 10: 180061294X ISBN 13: 9781800612945
Neu Hardcover
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data. Bestandsnummer des Verkäufers 9781800612945

Verkäufer kontaktieren

Neu kaufen

EUR 127,51
EUR 62,41 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb