Supervised Sequence Labelling with Recurrent Neural Networks

Graves, Alex

ISBN 10: 3642432182 ISBN 13: 9783642432187
Verlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2014
Neu Softcover

Verkäufer Kennys Bookstore, Olney, MD, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 9. Oktober 2009


Beschreibung

Beschreibung:

This book offers a complete framework for classifying and transcribing sequential data with recurrent neural networks. It uses state-of-the-art results in speech and handwriting recognition to show the framework in action. Series: Studies in Computational Intelligence. Num Pages: 146 pages, biography. BIC Classification: UYQN. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 10. Weight in Grams: 254. . 2014. Paperback. . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9783642432187

Diesen Artikel melden

Inhaltsangabe:

Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.

The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video.

Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.

Von der hinteren Coverseite:

Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools--robust to input noise and distortion, able to exploit long-range contextual information--that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.

The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video.

Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Supervised Sequence Labelling with Recurrent...
Verlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Erscheinungsdatum: 2014
Einband: Softcover
Zustand: New

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Alex Graves
ISBN 10: 3642432182 ISBN 13: 9783642432187
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 24691940/2

Verkäufer kontaktieren

Gebraucht kaufen

EUR 131,11
Währung umrechnen
Versand: EUR 105,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Alex Graves
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Recent research in Supervised Sequence Labelling with Recurrent Neural Networks New results in a hot topic Written by leading expertsSupervised sequence labelling is a vital area of machine learning, encompassing tasks such as sp. Bestandsnummer des Verkäufers 5060650

Verkäufer kontaktieren

Neu kaufen

EUR 162,51
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Graves, Alex
Verlag: Springer, 2014
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783642432187_new

Verkäufer kontaktieren

Neu kaufen

EUR 171,12
Währung umrechnen
Versand: EUR 13,81
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Graves, Alex
Verlag: Springer, 2014
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020227358

Verkäufer kontaktieren

Neu kaufen

EUR 185,35
Währung umrechnen
Versand: EUR 3,45
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Graves, Alex
Verlag: Springer, 2014
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 21628751-n

Verkäufer kontaktieren

Neu kaufen

EUR 186,53
Währung umrechnen
Versand: EUR 2,28
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Alex Graves
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Paperback

Anbieter: Grand Eagle Retail, Bensenville, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning toolsrobust to input noise and distortion, able to exploit long-range contextual informationthat would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition. Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783642432187

Verkäufer kontaktieren

Neu kaufen

EUR 188,87
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Alex Graves
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools-robust to input noise and distortion, able to exploit long-range contextual information-that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition. Bestandsnummer des Verkäufers 9783642432187

Verkäufer kontaktieren

Neu kaufen

EUR 192,59
Währung umrechnen
Versand: EUR 61,27
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Alex Graves
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools-robust to input noise and distortion, able to exploit long-range contextual information-that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition. 160 pp. Englisch. Bestandsnummer des Verkäufers 9783642432187

Verkäufer kontaktieren

Neu kaufen

EUR 192,59
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Alex Graves
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools¿robust to input noise and distortion, able to exploit long-range contextual information¿that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal.Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch. Bestandsnummer des Verkäufers 9783642432187

Verkäufer kontaktieren

Neu kaufen

EUR 192,59
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Graves, Alex
Verlag: Springer, 2014
ISBN 10: 3642432182 ISBN 13: 9783642432187
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783642432187

Verkäufer kontaktieren

Neu kaufen

EUR 209,27
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 7 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen