Support Vector Machines for Pattern Classification
Shigeo Abe
Verkauft von Bookbot, Prague, Tschechien
AbeBooks-Verkäufer seit 7. Oktober 2023
Gebraucht - Hardcover
Zustand: Gebraucht - Sehr gut
Anzahl: 1 verfügbar
In den Warenkorb legenVerkauft von Bookbot, Prague, Tschechien
AbeBooks-Verkäufer seit 7. Oktober 2023
Zustand: Gebraucht - Sehr gut
Anzahl: 1 verfügbar
In den Warenkorb legenLeichte Risse. A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Bestandsnummer des Verkäufers 68a6b322-c4f6-463c-ac1a-292d8e6dc16c
A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Originally formulated for two-class classification problems, support vector machines (SVMs) are now accepted as powerful tools for developing pattern classification and function approximation systems. Recent developments in kernel-based methods include kernel classifiers and regressors and their variants, advancements in generalization theory, and various feature selection and extraction methods.
Providing a unique perspective on the state of the art in SVMs, with a particular focus on classification, this thoroughly updated new edition includes a more rigorous performance comparison of classifiers and regressors. In addition to presenting various useful architectures for multiclass classification and function approximation problems, the book now also investigates evaluation criteria for classifiers and regressors.
Topics and Features:
An essential guide on the use of SVMs in pattern classification, this comprehensive resource will be of interest to researchers and postgraduate students, as well as professional developers.
Dr. Shigeo Abe is a Professor at Kobe University, Graduate School of Engineering. He is the author of the Springer titles Neural Networks and Fuzzy Systems and Pattern Classification: Neuro-fuzzy Methods and Their Comparison.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
1. Allgemeine Bestimmungen
1.1 Diese Einkaufsbedingungen (im Folgenden 'Bedingungen' genannt) der Firma Bookbot s.r.o. (deutsche Webseite: bookbot.de), Steuernr.: 054 00 651, mit Sitz in Dukelských hrdinu 359/21, Holesovice, 170 00 Prag 7, eingetragen im Handelsregister beim Stadtgericht in Prag, Abteilung C, Einlage 289573 (im Folgenden 'Bookbot' genannt) regeln die gegenseitigen Rechte und Pflichten aus dem Kaufvertrag, der gemäß § 2079 ff. des Gesetzes Nr. 89/2012 Slg. des Bürgerlichen Gesetz...
Bestellmenge | 1 bis 2 Werktage | 1 bis 2 Werktage |
---|---|---|
Erster Artikel | EUR 3.49 | EUR 3.49 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.