Variational arguments are classical techniques whose use can be traced back to the early development of the calculus of variations and further. Rooted in the physical principle of least action they have wide applications in diverse fields. This book provides a concise account of the essential tools of infinite-dimensional first-order variational analysis. These tools are illustrated by applications in many different parts of analysis, optimization and approximation, dynamical systems, mathematical economics and elsewhere. Much of the material in the book grows out of talks and short lecture series given by the authors in the past several years. Thus, chapters in this book can easily be arranged to form material for a graduate level topics course. A sizeable collection of suitable exercises is provided for this purpose. In addition, this book is also a useful reference for researchers who use variational techniques---or just think they might like to.
Jonathan M. Borwein, FRSC is Canada Research Chair in Collaborative Technology at Dalhousie University. He received his Doctorate from Oxford in 1974 and has been on faculty at Waterloo, Carnegie Mellon and Simon Fraser Universities. He has published extensively in optimization, analysis and computational mathematics and has received various prizes both for research and for exposition.
Qiji J. Zhu is a Professor in the Department of Mathematics at Western Michigan University. He received his doctorate at Northeastern University in 1992. He has been a Research Associate at University of Montreal, Simon Fraser University and
University of Victoria, Canada.