Tensor Networks for Dimensionality Reduction and Large-scale Optimization

Namgil Lee, lvan Oseledets, Anh Huy Phan, Qibin Zhao, Andrzej Cichocki

ISBN 10: 168083276X ISBN 13: 9781680832761
Verlag: now publishers Inc, US, 2017
Neu Paperback

Verkäufer Rarewaves.com UK, London, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 11. Juni 2025


Beschreibung

Beschreibung:

This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable largescale optimization problems. Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. Bestandsnummer des Verkäufers LU-9781680832761

Diesen Artikel melden

Inhaltsangabe:

This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable large-scale optimization problems.

Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.

 

See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. ISBN 978-1-68083-222-8

Reseña del editor:

This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable large-scale optimization problems.

Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.

 

See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. ISBN 978-1-68083-222-8

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Tensor Networks for Dimensionality Reduction...
Verlag: now publishers Inc, US
Erscheinungsdatum: 2017
Einband: Paperback
Zustand: New
Auflage: Illustrated.

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

Cichocki, Andrzej; Lee, Namgil; Oseledets, Ivan; Phan, Anh-Huy; Zhao, Qibin; Mandic, Danilo P
Verlag: Now Publishers, 2017
ISBN 10: 168083276X ISBN 13: 9781680832761
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 262. Bestandsnummer des Verkäufers 26378343013

Verkäufer kontaktieren

Neu kaufen

EUR 148,62
Währung umrechnen
Versand: EUR 3,41
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Cichocki, Andrzej; Lee, Namgil; Oseledets, Ivan; Phan, Anh-Huy; Zhao, Qibin; Mandic, Danilo P
Verlag: Now Publishers, 2017
ISBN 10: 168083276X ISBN 13: 9781680832761
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand pp. 262. Bestandsnummer des Verkäufers 385528250

Verkäufer kontaktieren

Neu kaufen

EUR 155,02
Währung umrechnen
Versand: EUR 7,49
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Cichocki, Andrzej; Lee, Namgil; Oseledets, Ivan; Phan, Anh-Huy; Zhao, Qibin; Mandic, Danilo P
Verlag: Now Publishers, 2017
ISBN 10: 168083276X ISBN 13: 9781680832761
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND pp. 262. Bestandsnummer des Verkäufers 18378343023

Verkäufer kontaktieren

Neu kaufen

EUR 159,72
Währung umrechnen
Versand: EUR 9,95
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb