hardcover. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Hardcover. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 111,59
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 96,91
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 118,69
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 112,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Chapman and Hall/CRC 2023-08-02, 2023
ISBN 10: 0367183730 ISBN 13: 9780367183738
Sprache: Englisch
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 109,49
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: New.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 120,46
Anzahl: 3 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 113,59
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 135,06
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 168 pages. 9.19x6.13x0.47 inches. In Stock.
Verlag: Taylor and Francis Ltd, GB, 2023
ISBN 10: 0367183730 ISBN 13: 9780367183738
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 165,51
Anzahl: 1 verfügbar
In den WarenkorbHardback. Zustand: New. This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines.Key Features: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selectionEffective methods of high-dimensional inference.
Zustand: New. Dr. Faming Liang is Distinguished Professor of Statistics, Purdue University. Prior joining Purdue University in 2017, he held regular faculty positions in the Department of Biostatistics, University of Florida and Department of Statisti.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 165,07
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 168 pages. 9.19x6.13x0.47 inches. In Stock.
Verlag: Taylor and Francis Ltd, GB, 2023
ISBN 10: 0367183730 ISBN 13: 9780367183738
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 149,60
Anzahl: 1 verfügbar
In den WarenkorbHardback. Zustand: New. This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines.Key Features: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selectionEffective methods of high-dimensional inference.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.