Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 52,55
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 57,39
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 55,83
Anzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Verlag: Springer-Verlag New York Inc, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 77,56
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 1st edition. 203 pages. 9.00x6.00x0.25 inches. In Stock.
Verlag: Springer Berlin Heidelberg, Springer Berlin Heidelberg Jun 2009, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Similarity-based learning methods have a great potential as an intuitive and exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi cation, prototypes, or Hebbian learning, with a large variety of di erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way towardimportant new directions of algorithmic design and accompanying theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch.
Verlag: Springer Berlin Heidelberg, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Similarity-based learning methods have a great potential as an intuitive and exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi cation, prototypes, or Hebbian learning, with a large variety of di erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andther apyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way towardimportant new directions of algorithmic design and accompanying theory.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Similarity-Based Clustering | Recent Developments and Biomedical Applications | Thomas Villmann (u. a.) | Taschenbuch | xi | Englisch | 2009 | Springer-Verlag GmbH | EAN 9783642018046 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer Berlin Heidelberg, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Sprache: Englisch
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Anbieter: California Books, Miami, FL, USA
EUR 230,97
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 232,10
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 223,38
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 247,68
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer Nature Switzerland, 2024
ISBN 10: 3031671589 ISBN 13: 9783031671586
Sprache: Englisch
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and Beyond | Proceedings of the 15th International Workshop, WSOM+ 2024, Mittweida, Germany, July 10-12, 2024 | Thomas Villmann (u. a.) | Taschenbuch | xiii | Englisch | 2024 | Springer Nature Switzerland | EAN 9783031671586 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Zustand: New.
Taschenbuch. Zustand: Neu. Advances in Self-Organizing Maps and Learning Vector Quantization | Proceedings of the 10th International Workshop, WSOM 2014, Mittweida, Germany, July, 2-4, 2014 | Thomas Villmann (u. a.) | Taschenbuch | xii | Englisch | 2014 | Springer | EAN 9783319076942 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer International Publishing AG, Cham, 2024
ISBN 10: 3031671589 ISBN 13: 9783031671586
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 234,20
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. The book presents the peer-reviewed contributions of the 15th International Workshop on Self-Organizing Maps, Learning Vector Quantization and Beyond (WSOM$+$ 2024), held at the University of Applied Sciences Mittweida (UAS Mitt\-weida), Germany, on July 1012, 2024.The book highlights new developments in the field of interpretable and explainable machine learning for classification tasks, data compression and visualization. Thereby, the main focus is on prototype-based methods with inherent interpretability, computational sparseness and robustness making them as favorite methods for advanced machine learning tasks in a wide variety of applications ranging from biomedicine, space science, engineering to economics and social sciences, for example. The flexibility and simplicity of those approaches also allow the integration of modern aspects such as deep architectures, probabilistic methods and reasoning as well as relevance learning. The book reflects both new theoretical aspects in this research area and interesting application cases. Thus, this book is recommended for researchers and practitioners in data analytics and machine learning, especially those who are interested in the latest developments in interpretable and robust unsupervised learning, data visualization, classification and self-organization. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Verlag: Springer Nature Switzerland, Springer International Publishing Aug 2024, 2024
ISBN 10: 3031671589 ISBN 13: 9783031671586
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -The book presents the peer-reviewed contributions of the 15th International Workshop on Self-Organizing Maps, Learning Vector Quantization and Beyond (WSOM$+$ 2024), held at the University of Applied Sciences Mittweida (UAS Mitt-weida), Germany, on July 10¿12, 2024.The book highlights new developments in the field of interpretable and explainable machine learning for classification tasks, data compression and visualization. Thereby, the main focus is on prototype-based methods with inherent interpretability, computational sparseness and robustness making them as favorite methods for advanced machine learning tasks in a wide variety of applications ranging from biomedicine, space science, engineering to economics and social sciences, for example. The flexibility and simplicity of those approaches also allow the integration of modern aspects such as deep architectures, probabilistic methods and reasoning as well as relevance learning. The book reflects both new theoretical aspects in this research area and interesting application cases.Thus, this book is recommended for researchers and practitioners in data analytics and machine learning, especially those who are interested in the latest developments in interpretable and robust unsupervised learning, data visualization, classification and self-organization.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 244 pp. Englisch.
Verlag: Springer Nature Switzerland, 2024
ISBN 10: 3031671589 ISBN 13: 9783031671586
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book presents the peer-reviewed contributions of the 15th International Workshop on Self-Organizing Maps, Learning Vector Quantization and Beyond (WSOM$+$ 2024), held at the University of Applied Sciences Mittweida (UAS Mitt-weida), Germany, on July 10-12, 2024.The book highlights new developments in the field of interpretable and explainable machine learning for classification tasks, data compression and visualization. Thereby, the main focus is on prototype-based methods with inherent interpretability, computational sparseness and robustness making them as favorite methods for advanced machine learning tasks in a wide variety of applications ranging from biomedicine, space science, engineering to economics and social sciences, for example. The flexibility and simplicity of those approaches also allow the integration of modern aspects such as deep architectures, probabilistic methods and reasoning as well as relevance learning. The book reflects both new theoretical aspects in this research area and interesting application cases. Thus, this book is recommended for researchers and practitioners in data analytics and machine learning, especially those who are interested in the latest developments in interpretable and robust unsupervised learning, data visualization, classification and self-organization.
Anbieter: California Books, Miami, FL, USA
EUR 286,04
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Springer-Nature New York Inc, 2024
ISBN 10: 3031671589 ISBN 13: 9783031671586
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 299,64
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 241 pages. 9.25x6.10x9.21 inches. In Stock.
Verlag: Springer, Berlin, Springer International Publishing, Springer, 2014
ISBN 10: 3319076949 ISBN 13: 9783319076942
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book collects the scientific contributions presented at the 10th Workshop on Self-Organizing Maps (WSOM 2014) held at the University of Applied Sciences Mittweida, Mittweida (Germany, Saxony), on July 2-4, 2014. Starting with the first WSOM-workshop 1997 in Helsinki this workshop focuses on newest results in the field of supervised and unsupervised vector quantization like self-organizing maps for data mining and data classification.This 10th WSOM brought together more than 50 researchers, experts and practitioners in the beautiful small town Mittweida in Saxony (Germany) nearby the mountains Erzgebirge to discuss new developments in the field of unsupervised self-organizing vector quantization systems and learning vector quantization approaches for classification. The book contains the accepted papers of the workshop after a careful review process as well as summaries of the invited talks. Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, computer science, data visualization, health systems, economics, engineering, social sciences, text and image analysis and time series analysis. Other chapters present the latest theoretical work on self-organizing maps as well as learning vector quantization methods, such as relating those methods to classical statistical decision methods.All the contribution demonstrate that vector quantization methods cover a large range of application areas including data visualization of high-dimensional complex data, advanced decision making and classification or data clustering and data compression.
Verlag: Springer-Verlag New York Inc, 2014
ISBN 10: 3319076949 ISBN 13: 9783319076942
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 341,28
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 2014 edition. 314 pages. 9.00x6.10x0.70 inches. In Stock.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 321,25
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Like New. Like New. book.
Verlag: Springer Berlin Heidelberg Jun 2009, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Similarity-based learning methods have a great potential as an intuitive and exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi cation, prototypes, or Hebbian learning, with a large variety of di erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way toward important new directions of algorithmic design and accompanying theory. 216 pp. Englisch.
Verlag: Springer Berlin Heidelberg, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototype.
Verlag: Springer, Berlin, Springer Nature Switzerland, Springer, 2024
ISBN 10: 3031671589 ISBN 13: 9783031671586
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book presents the peer-reviewed contributions of the 15th International Workshop on Self-Organizing Maps, Learning Vector Quantization and Beyond (WSOM$+$ 2024), held at the University of Applied Sciences Mittweida (UAS Mitt-weida), Germany, on July 10-12, 2024.The book highlights new developments in the field of interpretable and explainable machine learning for classification tasks, data compression and visualization. Thereby, the main focus is on prototype-based methods with inherent interpretability, computational sparseness and robustness making them as favorite methods for advanced machine learning tasks in a wide variety of applications ranging from biomedicine, space science, engineering to economics and social sciences, for example. The flexibility and simplicity of those approaches also allow the integration of modern aspects such as deep architectures, probabilistic methods and reasoning as well as relevance learning. The book reflects both new theoretical aspects in this research area and interesting application cases. Thus, this book is recommended for researchers and practitioners in data analytics and machine learning, especially those who are interested in the latest developments in interpretable and robust unsupervised learning, data visualization, classification and self-organization. 228 pp. Englisch.
Verlag: Berlin Springer International Publishing Springer Jun 2014, 2014
ISBN 10: 3319076949 ISBN 13: 9783319076942
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book collects the scientific contributions presented at the 10th Workshop on Self-Organizing Maps (WSOM 2014) held at the University of Applied Sciences Mittweida, Mittweida (Germany, Saxony), on July 2-4, 2014. Starting with the first WSOM-workshop 1997 in Helsinki this workshop focuses on newest results in the field of supervised and unsupervised vector quantization like self-organizing maps for data mining and data classification.This 10th WSOM brought together more than 50 researchers, experts and practitioners in the beautiful small town Mittweida in Saxony (Germany) nearby the mountains Erzgebirge to discuss new developments in the field of unsupervised self-organizing vector quantization systems and learning vector quantization approaches for classification. The book contains the accepted papers of the workshop after a careful review process as well as summaries of the invited talks. Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, computer science, data visualization, health systems, economics, engineering, social sciences, text and image analysis and time series analysis. Other chapters present the latest theoretical work on self-organizing maps as well as learning vector quantization methods, such as relating those methods to classical statistical decision methods.All the contribution demonstrate that vector quantization methods cover a large range of application areas including data visualization of high-dimensional complex data, advanced decision making and classification or data clustering and data compression. 314 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 288,61
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.